Quantitative contrast-enhanced first-pass cardiac perfusion MRI at 3 Tesla with accurate arterial input function and myocardial wall enhancement

Elodie Breton, Daniel Kim, Sohae Chung, Leon Axel*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

14 Scopus citations

Abstract

Purpose: To develop, and validate in vivo, a robust quantitative first-pass perfusion cardiovascular MR (CMR) method with accurate arterial input function (AIF) and myocardial wall enhancement. Materials and Methods: A saturation-recovery (SR) pulse sequence was modified to sequentially acquire multiple slices after a single nonselective saturation pulse at 3 Tesla. In each heartbeat, an AIF image is acquired in the aortic root with a short time delay (TD) (50 ms), followed by the acquisition of myocardial images with longer TD values (∼150-400 ms). Longitudinal relaxation rates (R 1 = 1/T 1) were calculated using an ideal saturation recovery equation based on the Bloch equation, and corresponding gadolinium contrast concentrations were calculated assuming fast water exchange condition. The proposed method was validated against a reference multi-point SR method by comparing their respective R 1 measurements in the blood and left ventricular myocardium, before and at multiple time-points following contrast injections, in 7 volunteers. Results: R 1 measurements with the proposed method and reference multi-point method were strongly correlated (r > 0.88, P < 10 -5) and in good agreement (mean difference ±1.96 standard deviation 0.131 ± 0.317 / 0.018 ± 0.140 s -1 for blood/myocardium, respectively). Conclusion: The proposed quantitative first-pass perfusion CMR method measured accurate R 1 values for quantification of AIF and myocardial wall contrast agent concentrations in 3 cardiac short-axis slices, in a total acquisition time of 523 ms per heartbeat.

Original languageEnglish (US)
Pages (from-to)676-684
Number of pages9
JournalJournal of Magnetic Resonance Imaging
Volume34
Issue number3
DOIs
StatePublished - Sep 2011

Keywords

  • 3T
  • MRI
  • R1 relaxation rate
  • contrast agent
  • first-pass perfusion
  • quantitative myocardial perfusion

ASJC Scopus subject areas

  • Radiology Nuclear Medicine and imaging

Fingerprint Dive into the research topics of 'Quantitative contrast-enhanced first-pass cardiac perfusion MRI at 3 Tesla with accurate arterial input function and myocardial wall enhancement'. Together they form a unique fingerprint.

Cite this