Abstract
The Poisson superbracket Lie superalgebra on the supertorus T2d|N is considered and its quantization is carried out. It is shown that there exists a non-trivial supercentral extension by means of 2d arbitrary c-numbers (when N is even), or 2d Grassmann numbers (when N is odd). It is shown that the infinite-dimensional superalgebras on the supertorus T2d|N can be considered as certain generalizations and large-M limits of the classical superalgebras A(M| M) and Q(M) (when N is even and odd respectively).
Original language | English |
---|---|
Pages (from-to) | 217-224 |
Journal | Modern Physics Letters A |
Volume | 6 |
DOIs | |
State | Published - 1991 |