Abstract
We demonstrate high-rate randomized data-encryption through optical fibers using the inherent quantum-measurement noise of coherent states of light. Specifically, we demonstrate 650Mbit.s data encryption through a 10Gbit.s data-bearing, in-line amplified 200-km-long line. In our protocol, legitimate users (who share a short secret key) communicate using an M-ry signal set while an attacker (who does not share the secret key) is forced to contend with the fundamental and irreducible quantum-measurement noise of coherent states. Implementations of our protocol using both polarization-encoded signal sets as well as polarization-insensitive phase-keyed signal sets are experimentally and theoretically evaluated. Different from the performance criteria for the cryptographic objective of key generation (quantum key-generation), one possible set of performance criteria for the cryptographic objective of data encryption is established and carefully considered.
Original language | English (US) |
---|---|
Article number | 062326 |
Journal | Physical Review A - Atomic, Molecular, and Optical Physics |
Volume | 71 |
Issue number | 6 |
DOIs | |
State | Published - Jun 2005 |
ASJC Scopus subject areas
- Atomic and Molecular Physics, and Optics