Quenched spin tunneling and diabolical points in magnetic molecules. I. Symmetric configurations

Anupam Garg*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

18 Scopus citations


The perfect quenching of spin tunneling that has previously been discussed in terms of interfering instantons, and has recently been observed in the magnetic molecule (formula presented) is treated using a discrete phase integral (or Wentzel-Kramers-Brillouin) method. The simplest model Hamiltonian for the phenomenon leads to a Schrödinger equation that is a five-term recursion relation. This recursion relation is reflection symmetric when the magnetic field applied to the molecule is along the hard magnetic axis. A completely general Herring formula for the tunnel splittings for all reflection-symmetric five-term recursion relations is obtained. Using connection formulas for a nonclassical turning point that may be described as lying “under the barrier,” and which underlies the oscillations in the splitting as a function of magnetic field, this Herring formula is transformed into two other formulas that express the splittings in terms of a small number of action and actionlike integrals. These latter formulas appear to be generally valid, even for problems where the recursion contains more than five terms. The results for the model Hamiltonian are compared with experiment, numerics, previous instanton based approaches, and the limiting case of no magnetic field.

Original languageEnglish (US)
JournalPhysical Review B - Condensed Matter and Materials Physics
Issue number9
StatePublished - 2001

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics

Fingerprint Dive into the research topics of 'Quenched spin tunneling and diabolical points in magnetic molecules. I. Symmetric configurations'. Together they form a unique fingerprint.

Cite this