QWIPs, SLS, Landsat and the International Space Station

Murzy Jhabvala, Kwong Kit Choi, Sarath Gunapala, Manijeh Razeghi, Mani Sundaram

Research output: Chapter in Book/Report/Conference proceedingConference contribution

4 Scopus citations

Abstract

In 1988 DARPA provided funding to NASA's Goddard Space Flight Center to support the development of GaAs Quantum Well Infrared Photodetectors (QWIP). The goal was to make a single element photodetector that might be expandable to a two-dimensional array format. Ultimately, this led to the development of a 128 x 128 element array in collaboration with AT&T Bell Labs and Rockwell Science Center in 1990. We continued to develop numerous generations of QWIP arrays most recently resulting in the multi-QWIP focal plane for the NASA-US Geological Survey (USGS) Landsat 8 mission launched in 2013 and a similar instrument on the Landsat 9 mission to be launched in 2020. Toward the end of the Landsat 8 QWIP-based Thermal Infrared Sensor (TIRS) instrument the potential of the newly developed Strained Layer Superlattice (SLS) detector array technology became of great interest to NASA for three primary reasons: 1) higher operating temperature; 2) broad spectral response and; 3) higher sensitivity. We have collaborated extensively with QmagiQ, LLC and Northwestern University to further pursue and advance the SLS technology ever since we started back in 2012. In December of 2018 we launched the first SLS-based IR camera system to the International Space Station on board the Robotic Refueling Mission #3 (RRM3). This paper will describe the evolution of QWIP technology leading to the current development of SLS-based imaging systems at the Goddard Space Flight Center over the past 30 years.

Original languageEnglish (US)
Title of host publicationQuantum Sensing and Nano Electronics and Photonics XVII
EditorsManijeh Razeghi, Jay S. Lewis, Giti A. Khodaparast, Pedram Khalili
PublisherSPIE
ISBN (Electronic)9781510633391
DOIs
StatePublished - 2020
EventQuantum Sensing and Nano Electronics and Photonics XVII 2020 - San Francisco, United States
Duration: Feb 2 2020Feb 6 2020

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume11288
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Conference

ConferenceQuantum Sensing and Nano Electronics and Photonics XVII 2020
Country/TerritoryUnited States
CitySan Francisco
Period2/2/202/6/20

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'QWIPs, SLS, Landsat and the International Space Station'. Together they form a unique fingerprint.

Cite this