Radiofrequency heating of retained cardiac leads during magnetic resonance imaging at 1.5 T and 3 T

Bach T. Nguyen, Bhumi Bhusal, Kate Fawcett, Laleh Golestanirad*

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations

Abstract

Patients with cardiovascular implantable electronic devices (CIEDs) are often prevented from receiving magnetic resonance imaging (MRI) due to risks associated with radiofrequency (RF) heating of tissue around the implanted leads. Although MR-conditional CIEDs are available, the safety labeling of such devices does not extend to patients with fragmented retained leads (FRLs), where segments of the leads are left in the tissue after the original device is extracted. Unlike intact and isolated leads of CIEDs, FRLs are often bare conductive lead fragments in direct contact with the tissue. No experimental work has been reported that assess RF heating of FRL during MRI thus far. In this work, we performed phantom experiments to measure RF heating of 4 patient-derived FRL models in a gel-based ASTM-like phantom during RF exposure at 64 MHz (proton imaging at 1.5 T) and 123 MHz (proton imaging at 3 T). We found FRL models to generate negligible temperature rise in the gel (T<1.84 °C) during a 10-minute scan at both 1.5 T and 3 T. These results are in agreement with previous simulation studies and suggest MRI may be performed safely in patients with fragmented retained leads.

Original languageEnglish (US)
Title of host publication43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2021
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages4986-4989
Number of pages4
ISBN (Electronic)9781728111797
DOIs
StatePublished - 2021
Event43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2021 - Virtual, Online, Mexico
Duration: Nov 1 2021Nov 5 2021

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
ISSN (Print)1557-170X

Conference

Conference43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2021
Country/TerritoryMexico
CityVirtual, Online
Period11/1/2111/5/21

ASJC Scopus subject areas

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint

Dive into the research topics of 'Radiofrequency heating of retained cardiac leads during magnetic resonance imaging at 1.5 T and 3 T'. Together they form a unique fingerprint.

Cite this