Radiomics Boosts Deep Learning Model for IPMN Classification

Lanhong Yao*, Zheyuan Zhang, Ugur Demir, Elif Keles, Camila Vendrami, Emil Agarunov, Candice Bolan, Ivo Schoots, Marc Bruno, Rajesh Keswani, Frank Miller, Tamas Gonda, Cemal Yazici, Temel Tirkes, Michael Wallace, Concetto Spampinato, Ulas Bagci

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contribution

5 Scopus citations

Abstract

Intraductal Papillary Mucinous Neoplasm (IPMN) cysts are pre-malignant pancreas lesions, and they can progress into pancreatic cancer. Therefore, detecting and stratifying their risk level is of ultimate importance for effective treatment planning and disease control. However, this is a highly challenging task because of the diverse and irregular shape, texture, and size of the IPMN cysts as well as the pancreas. In this study, we propose a novel computer-aided diagnosis pipeline for IPMN risk classification from multi-contrast MRI scans. Our proposed analysis framework includes an efficient volumetric self-adapting segmentation strategy for pancreas delineation, followed by a newly designed deep learning-based classification scheme with a radiomics-based predictive approach. We test our proposed decision-fusion model in multi-center data sets of 246 multi-contrast MRI scans and obtain superior performance to the state of the art (SOTA) in this field. Our ablation studies demonstrate the significance of both radiomics and deep learning modules for achieving the new SOTA performance compared to international guidelines and published studies (81.9% vs 61.3% in accuracy). Our findings have important implications for clinical decision-making. In a series of rigorous experiments on multi-center data sets (246 MRI scans from five centers), we achieved unprecedented performance (81.9% accuracy). The code is available upon publication.

Original languageEnglish (US)
Title of host publicationMachine Learning in Medical Imaging - 14th International Workshop, MLMI 2023, Held in Conjunction with MICCAI 2023, Proceedings
EditorsXiaohuan Cao, Xi Ouyang, Xuanang Xu, Islem Rekik, Zhiming Cui
PublisherSpringer Science and Business Media Deutschland GmbH
Pages134-143
Number of pages10
ISBN (Print)9783031456756
DOIs
StatePublished - 2024
Event14th International Workshop on Machine Learning in Medical Imaging, MLMI 2023 - Vancouver, Canada
Duration: Oct 8 2023Oct 8 2023

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume14349 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference14th International Workshop on Machine Learning in Medical Imaging, MLMI 2023
Country/TerritoryCanada
CityVancouver
Period10/8/2310/8/23

Funding

This project is supported by the NIH funding: NIH/NCI R01-CA246704 and NIH/NIDDK U01-DK127384-02S1.

Keywords

  • IPMN Classification
  • MRI
  • Pancreas Segmentation
  • Pancreatic Cysts
  • Radiomics

ASJC Scopus subject areas

  • Theoretical Computer Science
  • General Computer Science

Fingerprint

Dive into the research topics of 'Radiomics Boosts Deep Learning Model for IPMN Classification'. Together they form a unique fingerprint.

Cite this