Random particle model for fracture of aggregate or fiber composites

Zdeněk P. Bažant, Mazen R. Tabbara, Mohammad T. Kazemi, Gilles Pyaudier-Cabot

Research output: Contribution to journalArticlepeer-review

476 Scopus citations

Abstract

A particle model for brittle aggregate composite materials such as concretes, rocks, or ceramics is presented. The model is also applicable to the behavior of unidirectionally reinforced fiber composites in the transverse plane. A method of random computer generation of the particle system meeting the prescribed particle size distribution is developed. The particles are assumed to be elastic and have only axial interactions, as in a truss. The interparticle contact layers of the matrix are described by a softening stress-strain relation corresponding to a prescribed microscopic interparticle fracture energy. Both two- and three-dimensional versions of the model are easy to program, but the latter poses, at present, forbidding demands for computer time. The model is shown to simulate realistically the spread of cracking and its localization. Furthermore, the model exhibits a size effect on: (1) The nominal strength, agreeing with the previously proposed size effect law; and (2) the slope of the post-peak load-deflection diagrams of specimens of different sizes. For direct tensile specimens, the model predicts development of asymmetric response after the peak load.

Original languageEnglish (US)
Pages (from-to)1686-1705
Number of pages20
JournalJournal of Engineering Mechanics
Volume116
Issue number8
DOIs
StatePublished - Aug 1990

ASJC Scopus subject areas

  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint Dive into the research topics of 'Random particle model for fracture of aggregate or fiber composites'. Together they form a unique fingerprint.

Cite this