Skip to main navigation
Skip to search
Skip to main content
Northwestern Scholars Home
Help & FAQ
Home
Experts
Organizations
Research Output
Grants
Core Facilities
Datasets
Search by expertise, name or affiliation
Rank-Based estimation for garch processes
Beth Andrews
*
*
Corresponding author for this work
Statistics and Data Science
Research output
:
Contribution to journal
›
Article
›
peer-review
11
Scopus citations
Overview
Fingerprint
Fingerprint
Dive into the research topics of 'Rank-Based estimation for garch processes'. Together they form a unique fingerprint.
Sort by
Weight
Alphabetically
Mathematics
Asymptotic Efficiency
33%
Dispersion Function
33%
Gaussian
33%
Limiting Distribution
33%
Maximum Likelihood Estimator
66%
Minimizing
33%
Order
33%
Parameter Space
33%
Parameter Vector
33%
Parameters
100%
Rank Estimation
33%
Residuals
33%
Samples
33%
Selection
33%
True Parameter
33%
Zeros
33%
INIS
asymptotic solutions
33%
comparative evaluations
33%
dispersions
33%
distribution
33%
efficiency
33%
exchange rate
33%
maximum-likelihood fit
66%
simulation
33%
space
33%
transformations
33%
vectors
33%