Abstract
Metal-organic frameworks (MOFs) are excellent catalytic materials for the hydrolytic degradation of nerve agents and their simulants. However, most of the MOF-based hydrolysis catalysts to date are reliant on liquid water media buffered by a volatile liquid base. To overcome this practical limitation, we developed a simple and feasible strategy to synthesize MOF composites that structurally mimic phosphotriesterase's active site as well as its ligated histidine residues. By incorporating imidazole and its derivative into the pores of MOF-808, the obtained MOF composites achieved rapid degradation of a nerve agent simulant (dimethyl-4-nitrophenyl phosphate, DMNP) in pure water as well as in a humid environment without liquid base. Remarkably, one of the composites Im@MOF-808 displayed the highest catalytic activity for DMNP hydrolysis in unbuffered aqueous solutions among all reported MOF-based catalysts. Furthermore, solid-phase catalysis showed that Im@MOF-808 can also rapidly hydrolyze DMNP under high-humidity conditions without bulk water or external bases. This work provides a viable solution toward the implementation of MOF materials into protective equipment for practical nerve agent detoxification.
Original language | English (US) |
---|---|
Pages (from-to) | 1424-1429 |
Number of pages | 6 |
Journal | ACS Catalysis |
Volume | 11 |
Issue number | 3 |
DOIs | |
State | Published - Feb 5 2021 |
Keywords
- catalysis
- metal-organic frameworks
- nerve agents
- pure water
- solid phase
ASJC Scopus subject areas
- Catalysis
- General Chemistry