Abstract
Background: Recent findings have indicated the presence of a progenitor domain at the marginal zone/layer 1 of the cerebral cortex, and it has been suggested that these progenitors have neurogenic and gliogenic potential. However, their contribution to the histogenesis of the cortex remains poorly understood due to difficulties associated with genetically manipulating these unique cells in a population-specific manner.Results: We have adapted the electroporation technique to target pial surface cells for rapid genetic manipulation at postnatal day 2. In vivo data show that most of these cells proliferate and progressively differentiate into both neuronal and glial subtypes. Furthermore, these cells localize to the superficial layers of the optic tectum and cerebral cortex prior to migration away from the surface.Conclusions: We provide a foundation upon which future studies can begin to elucidate the molecular controls governing neural progenitor fate, migration, differentiation, and contribution to cortical and tectal histogenesis. Furthermore, specific genetic targeting of such neural progenitor populations will likely be of future clinical interest.
Original language | English (US) |
---|---|
Article number | 26 |
Journal | Neural Development |
Volume | 7 |
Issue number | 1 |
DOIs | |
State | Published - Jul 10 2012 |
Funding
We thank the Margaret E. Early Medical Research Trust, the Cedars-Sinai Regenerative Medicine Institute, and the Department of Biomedical Sciences at Cedars-Sinai Medical Center for funding that helped to make this work possible. TT is supported by a National Institute of Health/National Institute on Neurologic Disorders and Stroke award (1R01NS076794-01), an Alzheimer’s Association Zenith Fellows Award (ZEN-10-174633), and an American Federation of Aging Research/Ellison Medical Foundation Julie Martin Mid-Career Award in Aging Research (M11472). TT is the inaugural holder of the Ben Winters Endowed Chair in Regenerative Medicine at Cedars-Sinai Medical Center.
ASJC Scopus subject areas
- Developmental Neuroscience