Rapid signalling in distinct dopaminergic axons during locomotion and reward

M. W. Howe, D. A. Dombeck*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

256 Scopus citations


Dopaminergic projection axons from the midbrain to the striatum are crucial for motor control, as their degeneration in Parkinson disease results in profound movement deficits. Paradoxically, most recording methods report rapid phasic dopamine signalling (∼100-ms bursts) in response to unpredicted rewards, with little evidence for movement-related signalling. The leading model posits that phasic signalling in striatum-targeting dopamine neurons drives reward-based learning, whereas slow variations in firing (tens of seconds to minutes) in these same neurons bias animals towards or away from movement. However, current methods have provided little evidence to support or refute this model. Here, using new optical recording methods, we report the discovery of rapid phasic signalling in striatum-targeting dopaminergic axons that is associated with, and capable of triggering, locomotion in mice. Axons expressing these signals were largely distinct from those that responded to unexpected rewards. These results suggest that dopaminergic neuromodulation can differentially impact motor control and reward learning with sub-second precision, and indicate that both precise signal timing and neuronal subtype are important parameters to consider in the treatment of dopamine-related disorders.

Original languageEnglish (US)
Pages (from-to)505-510
Number of pages6
Issue number7613
StatePublished - Jul 28 2016

ASJC Scopus subject areas

  • General


Dive into the research topics of 'Rapid signalling in distinct dopaminergic axons during locomotion and reward'. Together they form a unique fingerprint.

Cite this