Reactive oxygen species expose cryptic epitopes associated with autoimmune Goodpasture syndrome

Raghu Kalluri*, Lloyd G. Cantley, Dontscho Kerjaschki, Eric G. Neilson

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

65 Scopus citations


Goodpasture syndrome is an autoimmune disease of the kidneys and lungs mediated by antibodies and T-cells directed to cryptic epitopes hidden within basement membrane hexamers rich in α3 non-collagenous globular (NC1) domains of type IV collagen. These epitopes are normally invisible to the immune system, but this privilege can be obviated by chemical modification. Endogenous drivers of immune activation consequent to the loss of privilege have long been suspected. We have examined the ability of reactive oxygen species (ROS) to expose Goodpasture epitopes buried within NC1 hexamers obtained from renal glomeruli abundant in α3(IV) NC1 domains. For some hexameric epitopes, like the Goodpasture epitopes, exposure to ROS specifically enhanced recognition by Goodpasture antibodies in a sequential and time-dependent fashion; control binding of epitopes to α3(IV) alloantibodies from renal transplant recipients with Alport syndrome was decreased, whereas epitope binding to heterologous antibodies recognizing all α3 NC1 epitopes remained the same. Inhibitors of hydrogen peroxide and hydroxyl radical scavengers were capable of attenuating the effects of ROS in cells and kidney by 30-50%, respectively, thereby keeping the Goodpasture epitopes largely concealed when compared with a 70% maximum inhibition by iron chelators. Hydrogen peroxide administration to rodents was sufficient to expose Goodpasture epitope in vivo and initiate autoantibody production. Our findings collectively suggest that ROS can alter the hexameric structure of type IV collagen to expose or destroy selectively immunologic epitopes embedded in basement membrane. The reasons for autoimmunity in Goodpasture syndrome may lie in an age-dependent deterioration in inhibitor function modulating oxidative damage to structural molecules. ROS therefore may play an important role in shaping post-translational epitope diversity or neoantigen formation in organ tissues.

Original languageEnglish (US)
Pages (from-to)20027-20032
Number of pages6
JournalJournal of Biological Chemistry
Issue number26
StatePublished - Jun 30 2000

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Cell Biology


Dive into the research topics of 'Reactive oxygen species expose cryptic epitopes associated with autoimmune Goodpasture syndrome'. Together they form a unique fingerprint.

Cite this