Real-time analysis of chemotactic motion of Euglena cells confined in a microchip toxicity sensor

Kazunari Ozasa, Jeesoo Lee, Simon Song, Mizuo Maeda

Research output: Chapter in Book/Report/Conference proceedingConference contribution

4 Scopus citations

Abstract

We developed the real-time analysis of chemotactic motion of microbial cells (Euglena gracilis), for on-chip cytotoxicity sensing for environmental chemical substances. The Euglena cells were confined in a closed-type micro-aquarium in a PDMS microchip, and their movements were taken by a CMOS video camera. When 1.5%-H2O2 was introduced into a microchannel running aside of the micro-aquarium, the H2O2 molecules permeated into the micro-aquarium by diffusion through porous PDMS wall, and the cells fell into continuous rotation instead of single step turning and/or straightforward swimming. Such an abnormal swimming behavior is the result of metabolic disturbing effects evoked by radical oxygen species released from H2O2. In order to sensing the metabolic disturbing effects, we achieved real-time categorization of the swimming traces into straightforward swimming or continuous rotation; firstly the swimming traces in the video image were sectioned into squares, and then the aspect ratio and filling factor for each square were calculated. High aspect ratio or small filling factor corresponded to straightforward swimming, whereas low aspect ratio and high filling factor to continuous rotation. This motion analysis enables to measure the metabolic disturbing effects on swimming Euglena cells quantitatively, which is important to detect unidentified toxic substances in environments.

Original languageEnglish (US)
Title of host publicationProceedings of the 4th International Conference on Materials and Applications for Sensors and Transducers
EditorsJon Gutierez, José Manuel Barandiaran, Evangelos Hristoforou, Dimitrios Vlachos
PublisherTrans Tech Publications Ltd
Pages185-188
Number of pages4
ISBN (Electronic)9783038354413
DOIs
StatePublished - 2015
Event4th International Conference on Materials and Applications for Sensors and Transducers, MAST 2014 - Bilbao, Spain
Duration: Jun 8 2014Jun 11 2014

Publication series

NameKey Engineering Materials
Volume644
ISSN (Print)1013-9826
ISSN (Electronic)1662-9795

Conference

Conference4th International Conference on Materials and Applications for Sensors and Transducers, MAST 2014
Country/TerritorySpain
CityBilbao
Period6/8/146/11/14

Keywords

  • Chemical sensing
  • Chemotaxis
  • Euglena gracilis
  • Microchannels
  • Real-time motion analysis

ASJC Scopus subject areas

  • General Materials Science
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Real-time analysis of chemotactic motion of Euglena cells confined in a microchip toxicity sensor'. Together they form a unique fingerprint.

Cite this