TY - JOUR
T1 - Recent consumption of a caffeine-containing beverage and serum biomarkers of cardiometabolic function in the UK Biobank
AU - Cornelis, Marilyn C.
N1 - Funding Information:
This work was supported by the National Institute on Aging (NIA, K01AG053477).
Funding Information:
This research has been conducted using the UK Biobank Resource (application no. 21394). Computations in this paper were run on the Quest cluster supported in part through the computational resources and staff contributions provided for the Quest high performance computing facility at Northwestern University, which is jointly supported by the Office of the Provost, the Office for Research and Northwestern University Information Technology.
Publisher Copyright:
© 2021 Cambridge University Press. All rights reserved.
PY - 2021/8/28
Y1 - 2021/8/28
N2 - We investigated the impact of recent caffeine drinking on glucose and other biomarkers of cardiometabolic function under free-living conditions while also accounting for lifestyle and genetic factors that alter caffeine metabolism and drinking behaviour. Up to 447 794 UK Biobank participants aged 37-73 years in 2006-2010 provided a non-fasting blood sample, for genetic and biomarker measures, and completed questionnaires regarding sociodemographics, medical history and lifestyle. Caffeine drinking (yes/no) about 1 h before blood collection was also recorded. Multivariable regressions were used to examine the association between recent caffeine drinking and serum levels of glycated Hb, glucose, lipids, apo, lipoprotein(a) and C-reactive protein. Men and women reporting recent caffeine drinking had clinically and significantly higher glucose levels than those not recently drinking caffeine (P < 0·0001). Larger effect sizes were observed among those 55+ years of age and with higher adiposity and longer fasting times (P ≤ 0·02 for interactions). Significant CYP1A2 rs2472297×caffeine and MLXIPL rs7800944 × caffeine interactions on glucose levels were observed among women (P = 0·004), with similar but non-significant interactions in men. Larger effect sizes were observed among women with rs2472297 CC or rs7800944 CC genotypes than among rs2472297 T or rs7800944 T carriers, respectively. In summary, men and women drinking caffeine within about 1 h of blood draw had higher glucose levels than those not drinking caffeine. Findings were modified by age, adiposity, fasting time and genetic factors related to caffeine metabolism and drinking behaviour. Implications for clinical and population studies of caffeine-containing beverages and cardiometabolic health are discussed.
AB - We investigated the impact of recent caffeine drinking on glucose and other biomarkers of cardiometabolic function under free-living conditions while also accounting for lifestyle and genetic factors that alter caffeine metabolism and drinking behaviour. Up to 447 794 UK Biobank participants aged 37-73 years in 2006-2010 provided a non-fasting blood sample, for genetic and biomarker measures, and completed questionnaires regarding sociodemographics, medical history and lifestyle. Caffeine drinking (yes/no) about 1 h before blood collection was also recorded. Multivariable regressions were used to examine the association between recent caffeine drinking and serum levels of glycated Hb, glucose, lipids, apo, lipoprotein(a) and C-reactive protein. Men and women reporting recent caffeine drinking had clinically and significantly higher glucose levels than those not recently drinking caffeine (P < 0·0001). Larger effect sizes were observed among those 55+ years of age and with higher adiposity and longer fasting times (P ≤ 0·02 for interactions). Significant CYP1A2 rs2472297×caffeine and MLXIPL rs7800944 × caffeine interactions on glucose levels were observed among women (P = 0·004), with similar but non-significant interactions in men. Larger effect sizes were observed among women with rs2472297 CC or rs7800944 CC genotypes than among rs2472297 T or rs7800944 T carriers, respectively. In summary, men and women drinking caffeine within about 1 h of blood draw had higher glucose levels than those not drinking caffeine. Findings were modified by age, adiposity, fasting time and genetic factors related to caffeine metabolism and drinking behaviour. Implications for clinical and population studies of caffeine-containing beverages and cardiometabolic health are discussed.
KW - Acute effects
KW - Biomarkers
KW - Caffeine
KW - Cholesterol
KW - Coffee
KW - Genetics
KW - Glucose
UR - http://www.scopus.com/inward/record.url?scp=85096235871&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85096235871&partnerID=8YFLogxK
U2 - 10.1017/S0007114520004377
DO - 10.1017/S0007114520004377
M3 - Article
C2 - 33143770
AN - SCOPUS:85096235871
VL - 126
SP - 582
EP - 590
JO - British Journal of Nutrition
JF - British Journal of Nutrition
SN - 0007-1145
IS - 4
ER -