Redox Control of the Binding Modes of an Organic Receptor

Marco Frasconi, Isurika R. Fernando, Yilei Wu, Zhichang Liu, Wei Guang Liu, Scott M. Dyar, Gokhan Barin, Michael R. Wasielewski, William A. Goddard, J. Fraser Stoddart*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

47 Scopus citations


The modulation of noncovalent bonding interactions by redox processes is a central theme in the fundamental understanding of biological systems as well as being ripe for exploitation in supramolecular science. In the context of host-guest systems, we demonstrate in this article how the formation of inclusion complexes can be controlled by manipulating the redox potential of a cyclophane. The four-electron reduction of cyclobis(paraquat-p-phenylene) to its neutral form results in altering its binding properties while heralding a significant change in its stereoelectronic behavior. Quantum mechanics calculations provide the energetics for the formation of the inclusion complexes between the cyclophane in its various redox states with a variety of guest molecules, ranging from electron-poor to electron-rich. The electron-donating properties displayed by the cyclophane were investigated by probing the interaction of this host with electron-poor guests, and the formation of inclusion complexes was confirmed by single-crystal X-ray diffraction analysis. The dramatic change in the binding mode depending on the redox state of the cyclophane leads to (i) aromatic donor-acceptor interactions in its fully oxidized form and (ii) van der Waals interactions when the cyclophane is fully reduced. These findings lay the foundation for the potential use of this class of cyclophane in various arenas, all the way from molecular electronics to catalysis, by virtue of its electronic properties. The extension of the concept presented herein into the realm of mechanically interlocked molecules will lead to the investigation of novel structures with redox control being expressed over the relative geometries of their components. (Figure Presented).

Original languageEnglish (US)
Pages (from-to)11057-11068
Number of pages12
JournalJournal of the American Chemical Society
Issue number34
StatePublished - Sep 2 2015

ASJC Scopus subject areas

  • Chemistry(all)
  • Biochemistry
  • Catalysis
  • Colloid and Surface Chemistry


Dive into the research topics of 'Redox Control of the Binding Modes of an Organic Receptor'. Together they form a unique fingerprint.

Cite this