Reducing whole-body vibration and musculoskeletal injury with a new car seat design

Mohsen Makhsous*, R. Hendrix, Z. Crowther, E. Nam, F. Lin

*Corresponding author for this work

Research output: Contribution to journalArticle

31 Scopus citations

Abstract

A new car seat design, which allows the back part of the seat (BPS) to lower down while a protruded cushion supports the lumbar spine, was quantitatively tested to determine its effectiveness and potentials in reducing whole-body vibration (WBV) and musculoskeletal disorders in automobile drivers. Nine subjects were tested to drive with the seat in: 1) the conventional seating arrangement (Normal posture); and 2) the new seating design (without BPS (WO-BPS) posture). By reducing contact between the seat and the ischial tuberosities (ITs), the new seating design reduced both contact pressure and amplitude of vibrations transmitted through the body. Root-mean-squared values for acceleration along the z-axis at the lumbar spine and ITs significantly decreased 31.6% (p < 0.01) and 19.8% (p < 0.05), respectively, by using the WO-BPS posture. At the same time, vibration dose values significantly decreased along the z-axis of the lumbar spine and ITs by 43.0% (p < 0.05) and 34.5% (p < 0.01). This reduction in WBV allows more sustained driving than permitted by conventional seating devices, by several hours, before sustaining unacceptable WBV levels. Such seating devices, implemented in large trucks and other high-vibration vehicles, may reduce the risk of WBV-related musculoskeletal disorders among drivers.

Original languageEnglish (US)
Pages (from-to)1183-1199
Number of pages17
JournalErgonomics
Volume48
Issue number9
DOIs
StatePublished - Jul 15 2005

Keywords

  • Ergonomics
  • Seat
  • Vehicle
  • Whole-body vibration

ASJC Scopus subject areas

  • Human Factors and Ergonomics
  • Physical Therapy, Sports Therapy and Rehabilitation

Fingerprint Dive into the research topics of 'Reducing whole-body vibration and musculoskeletal injury with a new car seat design'. Together they form a unique fingerprint.

  • Cite this