Reduction by hydrogen of vanadium in vanadate apatite solid solutions

Carlos Bauer Boechat*, Joice Terra, Jean Guillaume Eon, Donald E Ellis, Alexandre Malta Rossi

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

13 Scopus citations


Solid solutions of phosphate and vanadate calcium apatites, Ca 10(PO4)6-χ(VO4) χ(OH)2, were treated with hydrogen at high temperatures and studied by chemical analysis, XRD, FTIR, EPR and ENDOR spectroscopies. Only one reduced oxidation state, V4+, was detected. The extent of the reduction depended on the vanadium content as well as the treatment time. For solid solutions with χ < 1.5, a fast reduction of V5+ to V4+ up to the limit V4+/(V + P) = 1/3 is achieved and the long-range order of the apatite lattice is preserved. Previous dehydroxylation of apatite with formation of an oxyapatite enhances the reduction process. For solid solutions with χ > 1.5, the reaction results in apatite decomposition and the formation of a perovskite, CaVO 3. EPR and ENDOR spectroscopy reveal that the V5+ → V4+ reaction induces strong changes in the vanadium site structure with the formation of a vanadyl bond and the loss of the nearest OH- group. Atomistic simulations were made to estimate local distortions around vanadium due to the reduction mechanism. Density functional calculations were performed to characterize the chemical environment induced by the V 5+ → V4+ reaction at VO4 sites through Mulliken atomic-orbital population analysis as well as charge and spin density maps. A mechanism for the overall reaction is proposed.

Original languageEnglish (US)
Pages (from-to)4290-4298
Number of pages9
JournalPhysical Chemistry Chemical Physics
Issue number19
StatePublished - Oct 1 2003

ASJC Scopus subject areas

  • Physics and Astronomy(all)
  • Physical and Theoretical Chemistry

Fingerprint Dive into the research topics of 'Reduction by hydrogen of vanadium in vanadate apatite solid solutions'. Together they form a unique fingerprint.

Cite this