Abstract
Effective blockade of the pluripotent cytokine transforming growth factor (TGF)-β as a means of cutaneous scar reduction is a strategy with great potential. This desired effect may be achieved through the overexpression of mutant TGF-β receptors within the wound milieu. Our goal was to examine the effects of dominant negative mutant TGF-β receptor II (TGFβRIIdn) protein expression in a well-established rabbit ear model of hypertrophic scarring. Serial injections of a retroviral construct encoding a truncated TGFβRII and the marker green fusion protein (pMSCV-rIIdn-GFP) were performed in 7 mm punch wounds at day 10 and day 12 (two-day injection group) or days 8, 10, 12 (three-day injection group) post-wounding. Delivery of an empty vector (pMSCV-GFP) at the same time points served as a negative control. Histomorphometric analysis of wounds harvested at day 28 revealed a modest, though statistically significant reduction (20%, p = 0.027) in the scar elevation index (SEI) in two-day treated and a more modest reduction in SEI (12%) in the three-day treated arm compared to null-treated controls. Confocal microscopy confirmed stable, yet variable transfection of the construct in both peri-wound tissue as well as rabbit dermal fibroblasts transfected in vitro. Optimisation of this novel application in retroviral gene therapy could lead to effective anti-scarring strategies.
Original language | English (US) |
---|---|
Pages (from-to) | 64-72 |
Number of pages | 9 |
Journal | Journal of Plastic, Reconstructive and Aesthetic Surgery |
Volume | 60 |
Issue number | 1 |
DOIs | |
State | Published - Jan 2007 |
Keywords
- Gene therapy
- Hypertrophic scarring
- Retrovirus
- Transforming growth factor-beta
ASJC Scopus subject areas
- Surgery