Reengineering a transmembrane protein to treat muscular dystrophy using exon skipping

Quan Q. Gao, Eugene Wyatt, Jeff A. Goldstein, Peter LoPresti, Lisa M. Castillo, Alec Gazda, Natalie Petrossian, Judy U. Earley, Michele Hadhazy, David Y. Barefield, Alexis R. Demonbreun, Carsten Bönnemann, Matthew Wolf, Elizabeth M. McNally*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

27 Scopus citations


Exon skipping uses antisense oligonucleotides as a treatment for genetic diseases. The antisense oligonucleotides used for exon skipping are designed to bypass premature stop codons in the target RNA and restore reading frame disruption. Exon skipping is currently being tested in humans with dystrophin gene mutations who have Duchenne muscular dystrophy. For Duchenne muscular dystrophy, the rationale for exon skipping derived from observations in patients with naturally occurring dystrophin gene mutations that generated internally deleted but partially functional dystrophin proteins. We have now expanded the potential for exon skipping by testing whether an internal, in-frame truncation of a transmembrane protein γ-sarcoglycan is functional. We generated an internally truncated γ-sarcoglycan protein that we have termed Mini-Gamma by deleting a large portion of the extracellular domain. Mini-Gamma provided functional and pathological benefits to correct the loss of γ-sarcoglycan in a Drosophila model, in heterologous cell expression studies, and in transgenic mice lacking γ-sarcoglycan. We generated a cellular model of human muscle disease and showed that multiple exon skipping could be induced in RNA that encodes a mutant human γ-sarcoglycan. Since Mini-Gamma represents removal of 4 of the 7 coding exons in γ-sarcoglycan, this approach provides a viable strategy to treat the majority of patients with γ-sarcoglycan gene mutations.

Original languageEnglish (US)
Pages (from-to)4186-4195
Number of pages10
JournalJournal of Clinical Investigation
Issue number11
StatePublished - Nov 2 2015

ASJC Scopus subject areas

  • General Medicine


Dive into the research topics of 'Reengineering a transmembrane protein to treat muscular dystrophy using exon skipping'. Together they form a unique fingerprint.

Cite this