Reflex and intrinsic changes induced by fatigue of human elbow extensor muscles

Li Qun Zhang*, W. Zev Rymer

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

66 Scopus citations

Abstract

Fatigue-induced changes in intrinsic and reflex properties of human elbow extensor muscles and the underlying mechanisms for fatigue compensation were investigated. The elbow joint was perturbed using small-amplitude and pseudorandom movement patterns while subjects maintained steady levels of mean joint extension torque. Intrinsic and reflex properties were identified simultaneously using a nonlinear delay differential equation model. Intrinsic joint properties were characterized by measures of joint stiffness, viscous damping, and limb inertia and reflex properties characterized by measures of dynamic and static reflex gains. Fatigue was induced using 15 min of intermittent voluntary isometric (submaximal) exercise, and a rest period of 10 min was taken to allow the fatigued muscles to recover from acute fatigue effects. Identical experimental and data analysis procedures were used before and after fatigue. Our findings were that after fatigue, joint stiffness was significantly reduced at higher torque levels, presumably reflecting the reduced force-generating capacity of fatigued muscles. Conversely, joint viscosity was increased after fatigue potentially because of the reduced crossbridge detachment rate and prolonged relaxation associated with intracellular acidosis accompanying fatigue. Static stretch reflex gain decreased significantly at higher torque levels after fatigue, indicating that the isometric fatiguing exercise might be associated with a preferential change in properties of spindle chain fibers and bag2 fibers. For matched pre- and postfatigue torque levels, dynamic reflexes contributed relatively more torque after fatigue, displaying higher dynamic reflex gains and larger dynamic electromyographic responses elicited by the controlled small-amplitude position perturbations. These changes appear to counteract the fatigue-induced reductions in joint stiffness and static reflex gain. The compensatory responses could be partly due to the effects of increasing the number of active motoneurons innervating the fatiguing muscles. This shift in operating point gave rise to significant compensation for the loss of contractile force. The compensation could also be due to fusimotor adjustment, which could make the dynamic reflex gain much less sensitive to fatigue than intrinsic stiffness. In short, the reduced contribution from intrinsic stiffness to joint torque was compensated by increased contribution from dynamic stretch reflexes after fatigue.

Original languageEnglish (US)
Pages (from-to)1086-1094
Number of pages9
JournalJournal of neurophysiology
Volume86
Issue number3
DOIs
StatePublished - 2001

ASJC Scopus subject areas

  • General Neuroscience
  • Physiology

Fingerprint

Dive into the research topics of 'Reflex and intrinsic changes induced by fatigue of human elbow extensor muscles'. Together they form a unique fingerprint.

Cite this