TY - GEN
T1 - Reflex modulation is linked to the orientation of arm mechanics relative to the environment
AU - Knitky, Matthew A.
AU - Ravichandran, Vengateswaran J.
AU - Trumbower, Randy D.
AU - Perreault, Eric J.
PY - 2008
Y1 - 2008
N2 - To successfully complete a motor task, it is necessary to control not only the kinematics and dynamics of a limb, but also its mechanical properties. In a multijoint task such as the control of arm posture, limb mechanics are directional, resisting external disturbances more effectively in certain directions than others. It has been demonstrated that feedforward neuromotor pathways can regulate these directional characteristics of the arm to compensate for changes in the mechanical properties of the environment. However, it is unclear if spinal reflex pathways exhibit a similar specificity. The present results suggest that the sensitivity of the human stretch reflex also can be tuned to adapt the mechanical properties of the arm in a task appropriate manner. We hypothesized that the orientation of arm mechanics relative to the mechanical properties of the environment would influence reflex adaptation. Two destabilizing environments, oriented relative to the mechanical properties of the arm, were used to test this hypothesis. These environments were simulated using a 3 degrees of freedom (DOF) robot, which also was used to perturb arm posture. The resulting reflexes, assessed by electromyograms recorded from 8 muscles, were found to modulate in accordance with how the environmental instability was oriented relative to the mechanical properties of the arm. Our results suggest that stretch sensitive reflexes throughout the arm are modulated in a coordinated manner corresponding to the orientation of arm mechanics relative to the environment.
AB - To successfully complete a motor task, it is necessary to control not only the kinematics and dynamics of a limb, but also its mechanical properties. In a multijoint task such as the control of arm posture, limb mechanics are directional, resisting external disturbances more effectively in certain directions than others. It has been demonstrated that feedforward neuromotor pathways can regulate these directional characteristics of the arm to compensate for changes in the mechanical properties of the environment. However, it is unclear if spinal reflex pathways exhibit a similar specificity. The present results suggest that the sensitivity of the human stretch reflex also can be tuned to adapt the mechanical properties of the arm in a task appropriate manner. We hypothesized that the orientation of arm mechanics relative to the mechanical properties of the environment would influence reflex adaptation. Two destabilizing environments, oriented relative to the mechanical properties of the arm, were used to test this hypothesis. These environments were simulated using a 3 degrees of freedom (DOF) robot, which also was used to perturb arm posture. The resulting reflexes, assessed by electromyograms recorded from 8 muscles, were found to modulate in accordance with how the environmental instability was oriented relative to the mechanical properties of the arm. Our results suggest that stretch sensitive reflexes throughout the arm are modulated in a coordinated manner corresponding to the orientation of arm mechanics relative to the environment.
KW - Adaptation
KW - Endpoint stiffness
KW - Stretch reflex
UR - http://www.scopus.com/inward/record.url?scp=61849156319&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=61849156319&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:61849156319
SN - 9781424418152
T3 - Proceedings of the 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS'08 - "Personalized Healthcare through Technology"
SP - 5350
EP - 5353
BT - Proceedings of the 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS'08
T2 - 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS'08
Y2 - 20 August 2008 through 25 August 2008
ER -