TY - JOUR
T1 - Regulation of human basophil and lung mast cell function by cyclic adenosine monophosphate
AU - Peachell, P. T.
AU - MacGlashan, D. W.
AU - Lichtenstein, L. M.
AU - Schleimer, R. P.
N1 - Copyright:
Copyright 2004 Elsevier B.V., All rights reserved.
PY - 1988
Y1 - 1988
N2 - Immunologic activation of purified human lung mast cells (HLMC) and basophils with anti-IgE induced histamine release but failed to elicit any changes in cAMP levels. In contrast, histamine release and monophasic rises in cAMP were observed in both rat peritoneal mast cells (RPMC) challenged with concanavalin A (73% enhancement over basal cAMP 20 sec after activation) and a cultured mouse bone marrow-derived mast cell (PT18 cell line) passively sensitized with dinitrophenol-specific IgE and stimulated with antigen (39% increase above basal at 15 sec). The adenylate cyclase activators isoprenaline, prostaglandin E2 (PGE2), and forskolin and the phosphodiesterase inhibitor isobutylmethylxanthine (IBMX) all induced elevations in cAMP levels in both basophils and HLMC. In basophils, PGE2 and isoprenaline produced approximately twofold increases in cAMP that were maximal at 1 min and decayed thereafter. Forskolin and IBMX produced threefold increases in cAMP that peaked 10 min after activation and persisted for up to 20 min. In HLMC, isoprenaline provoked a rapid monophasic fourfold increase in cAMP that was maximal at 1 min after addition. Levels of cAMP subsequently declined but remained significantly elevated over resting levels for up to 30 min. PGE2, forskolin, and IBMX all produced approximately threefold rises in HLMC cAMP that peaked around 5 min and persisted for 30 min. In both the basophil and HLMC, agonist-induced elevations in cAMP correlated well with the inhibition of mediator release. In basophils, the order IBMX > forskolin > PGE2 > isoprenaline held for both the inhibition of histamine and leukotriene C4 release and the augmentation of cAMP levels. In HLMC, individual agonists elevated cAMP levels to similar degrees and inhibited the release of histamine, leukotriene C4, and PGD2 to comparable extents, although the release of the arachidonate metabolites was generally more sensitive to the inhibitory actions of these agonists. These results suggest that elevations in cAMP, in both the basophil and HLMC, are associated with the inhibition of mediator release but not the initiation of the secretory process.
AB - Immunologic activation of purified human lung mast cells (HLMC) and basophils with anti-IgE induced histamine release but failed to elicit any changes in cAMP levels. In contrast, histamine release and monophasic rises in cAMP were observed in both rat peritoneal mast cells (RPMC) challenged with concanavalin A (73% enhancement over basal cAMP 20 sec after activation) and a cultured mouse bone marrow-derived mast cell (PT18 cell line) passively sensitized with dinitrophenol-specific IgE and stimulated with antigen (39% increase above basal at 15 sec). The adenylate cyclase activators isoprenaline, prostaglandin E2 (PGE2), and forskolin and the phosphodiesterase inhibitor isobutylmethylxanthine (IBMX) all induced elevations in cAMP levels in both basophils and HLMC. In basophils, PGE2 and isoprenaline produced approximately twofold increases in cAMP that were maximal at 1 min and decayed thereafter. Forskolin and IBMX produced threefold increases in cAMP that peaked 10 min after activation and persisted for up to 20 min. In HLMC, isoprenaline provoked a rapid monophasic fourfold increase in cAMP that was maximal at 1 min after addition. Levels of cAMP subsequently declined but remained significantly elevated over resting levels for up to 30 min. PGE2, forskolin, and IBMX all produced approximately threefold rises in HLMC cAMP that peaked around 5 min and persisted for 30 min. In both the basophil and HLMC, agonist-induced elevations in cAMP correlated well with the inhibition of mediator release. In basophils, the order IBMX > forskolin > PGE2 > isoprenaline held for both the inhibition of histamine and leukotriene C4 release and the augmentation of cAMP levels. In HLMC, individual agonists elevated cAMP levels to similar degrees and inhibited the release of histamine, leukotriene C4, and PGD2 to comparable extents, although the release of the arachidonate metabolites was generally more sensitive to the inhibitory actions of these agonists. These results suggest that elevations in cAMP, in both the basophil and HLMC, are associated with the inhibition of mediator release but not the initiation of the secretory process.
UR - http://www.scopus.com/inward/record.url?scp=0023853475&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0023853475&partnerID=8YFLogxK
M3 - Article
C2 - 2447182
AN - SCOPUS:0023853475
SN - 0022-1767
VL - 140
SP - 571
EP - 579
JO - Journal of Immunology
JF - Journal of Immunology
IS - 2
ER -