TY - JOUR
T1 - Relation of Myocardial Perfusion Reserve and Left Ventricular Ejection Fraction in Ischemic and Nonischemic Cardiomyopathy
AU - Wang, Shuo
AU - Patel, Hena
AU - Miller, Tamari
AU - Ameyaw, Keith
AU - Miller, Patrick
AU - Narang, Akhil
AU - Kawaji, Keigo
AU - Singh, Amita
AU - Landeras, Luis
AU - Liu, Xing Peng
AU - Mor-Avi, Victor
AU - Patel, Amit R.
N1 - Funding Information:
This project was supported by the National Center for Advancing Translational Sciences (NCATS) of the National Institutes of Health (NIH) (Bethesda, Maryland) through grant number 5UL1TR002389-02 that funds the Institute for Translational Medicine (ITM) (Chicago, Illinois). Dr. H. Patel was funded by a T32 Cardiovascular Sciences Training (Chicago, Illinois) Grant (5T32HL7381). Dr. Kawaji, was funded by a K25 Grant (HL141634) (Bethesda, Maryland).
Publisher Copyright:
© 2022
PY - 2022/7/1
Y1 - 2022/7/1
N2 - Quantification of myocardial perfusion reserve (MPR) using vasodilator stress cardiac magnetic resonance is increasingly used to detect coronary artery disease. However, MPR can also be altered because of changes in microvascular function. We aimed to determine whether MPR can distinguish between ischemic cardiomyopathy (IC) secondary to coronary artery disease and non-IC (NIC) with microvascular dysfunction and no underlying epicardial coronary disease. A total of 60 patients (mean age 65 ± 14 years, 30% women), including 31 with IC and 29 with NIC, were identified from a pre-existing vasodilator stress cardiac magnetic resonance registry. Short-axis cine slices were used to measure left ventricular ejection fraction (LVEF) using the Simpson method of disks. MPR index (MPRi) was determined from first-pass myocardial perfusion images during stress and rest using the upslope ratio, normalized for the arterial input and corrected for rate pressure product. Patients in both groups were divided into subgroups of LVEF ≤35% and LVEF >35%. Differences in MPRi between the subgroups were examined. MPRi was moderately correlated with LVEF in patients with NIC (r = 0.53, p = 0.03), whereas the correlation in patients with IC was lower (r = 0.32, p = 0.22). Average LVEF in NIC and IC was 34% ± 8% and 35% ± 8%, respectively (p = 0.63). MPRi was not significantly different in IC compared with NIC (1.17 [0.88 to 1.61] vs 1.23 [1.07 to 1.66], p = 0.41), including the subgroups of LVEF (IC: 1.20 ± 0.56 vs NIC: 1.15 ± 0.24, p = 0.75 for LVEF ≤35% and IC: 1.35 ± 0.44 vs NIC: 1.58 ± 0.50, p = 0.19 for LVEF >35%). However, MPRi was significantly lower in patients with LVEF ≤35% compared with those with LVEF>35% (1.17 ± 0.40 vs 1.47 ± 0.47, p = 0.01). Similar difference between LVEF groups was noted in the patients with NIC (1.15 ± 0.24 vs 1.58 ± 0.50, p = 0.006) but not in the patients with IC (1.20 ± 0.56 vs 1.35 ± 0.44, p = 0.42). MPRi can be abnormal in the presence of left ventricular dysfunction with nonischemic etiology. This is a potential pitfall to consider when using this approach to detect ischemia because of epicardial coronary disease using myocardial perfusion imaging.
AB - Quantification of myocardial perfusion reserve (MPR) using vasodilator stress cardiac magnetic resonance is increasingly used to detect coronary artery disease. However, MPR can also be altered because of changes in microvascular function. We aimed to determine whether MPR can distinguish between ischemic cardiomyopathy (IC) secondary to coronary artery disease and non-IC (NIC) with microvascular dysfunction and no underlying epicardial coronary disease. A total of 60 patients (mean age 65 ± 14 years, 30% women), including 31 with IC and 29 with NIC, were identified from a pre-existing vasodilator stress cardiac magnetic resonance registry. Short-axis cine slices were used to measure left ventricular ejection fraction (LVEF) using the Simpson method of disks. MPR index (MPRi) was determined from first-pass myocardial perfusion images during stress and rest using the upslope ratio, normalized for the arterial input and corrected for rate pressure product. Patients in both groups were divided into subgroups of LVEF ≤35% and LVEF >35%. Differences in MPRi between the subgroups were examined. MPRi was moderately correlated with LVEF in patients with NIC (r = 0.53, p = 0.03), whereas the correlation in patients with IC was lower (r = 0.32, p = 0.22). Average LVEF in NIC and IC was 34% ± 8% and 35% ± 8%, respectively (p = 0.63). MPRi was not significantly different in IC compared with NIC (1.17 [0.88 to 1.61] vs 1.23 [1.07 to 1.66], p = 0.41), including the subgroups of LVEF (IC: 1.20 ± 0.56 vs NIC: 1.15 ± 0.24, p = 0.75 for LVEF ≤35% and IC: 1.35 ± 0.44 vs NIC: 1.58 ± 0.50, p = 0.19 for LVEF >35%). However, MPRi was significantly lower in patients with LVEF ≤35% compared with those with LVEF>35% (1.17 ± 0.40 vs 1.47 ± 0.47, p = 0.01). Similar difference between LVEF groups was noted in the patients with NIC (1.15 ± 0.24 vs 1.58 ± 0.50, p = 0.006) but not in the patients with IC (1.20 ± 0.56 vs 1.35 ± 0.44, p = 0.42). MPRi can be abnormal in the presence of left ventricular dysfunction with nonischemic etiology. This is a potential pitfall to consider when using this approach to detect ischemia because of epicardial coronary disease using myocardial perfusion imaging.
UR - http://www.scopus.com/inward/record.url?scp=85130066367&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85130066367&partnerID=8YFLogxK
U2 - 10.1016/j.amjcard.2022.02.022
DO - 10.1016/j.amjcard.2022.02.022
M3 - Article
C2 - 35487776
AN - SCOPUS:85130066367
SN - 0002-9149
VL - 174
SP - 143
EP - 150
JO - American Journal of Cardiology
JF - American Journal of Cardiology
ER -