TY - JOUR

T1 - Representation zeta functions of compact p-adic analytic groups and arithmetic groups

AU - Avni, Nir

AU - Klopsch, Benjamin

AU - Onn, Uri

AU - Voll, Christopher

PY - 2013/1/15

Y1 - 2013/1/15

N2 - We introduce new methods from p-adic integration into the study of representation zeta functions associated to compact p-adic analytic groups and arithmetic groups. They allow us to establish that the representation zeta functions of generic members of families of p-adic analytic pro-p groups obtained from a global, "perfect" Lie lattice satisfy functional equations. In the case of "semisimple" compact p-adic analytic groups, we exhibit a link between the relevant p-adic integrals and a natural filtration of the locus of irregular elements in the associated semisimple Lie algebra, defined by the centralizer dimension. Based on this algebro-geometric description, we compute explicit formulas for the representation zeta functions of principal congruence subgroups of the groups SL3(o{script}), where o is a compact discrete valuation ring of characteristic 0, and of the groups SU3(D{script},o{script}), where D is an unramified quadratic extension of o. These formulas, combined with approximative Clifford theory, allow us to determine the abscissae of convergence of representation zeta functions associated to arithmetic subgroups of algebraic groups of type A2. Assuming a conjecture of Serre on the congruence subgroup problem, we thereby prove a conjecture of Larsen and Lubotzky on lattices in higher-rank semisimple groups for algebraic groups of type A2 defined over number fields.

AB - We introduce new methods from p-adic integration into the study of representation zeta functions associated to compact p-adic analytic groups and arithmetic groups. They allow us to establish that the representation zeta functions of generic members of families of p-adic analytic pro-p groups obtained from a global, "perfect" Lie lattice satisfy functional equations. In the case of "semisimple" compact p-adic analytic groups, we exhibit a link between the relevant p-adic integrals and a natural filtration of the locus of irregular elements in the associated semisimple Lie algebra, defined by the centralizer dimension. Based on this algebro-geometric description, we compute explicit formulas for the representation zeta functions of principal congruence subgroups of the groups SL3(o{script}), where o is a compact discrete valuation ring of characteristic 0, and of the groups SU3(D{script},o{script}), where D is an unramified quadratic extension of o. These formulas, combined with approximative Clifford theory, allow us to determine the abscissae of convergence of representation zeta functions associated to arithmetic subgroups of algebraic groups of type A2. Assuming a conjecture of Serre on the congruence subgroup problem, we thereby prove a conjecture of Larsen and Lubotzky on lattices in higher-rank semisimple groups for algebraic groups of type A2 defined over number fields.

UR - http://www.scopus.com/inward/record.url?scp=84873301387&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84873301387&partnerID=8YFLogxK

U2 - 10.1215/00127094-1959198

DO - 10.1215/00127094-1959198

M3 - Article

AN - SCOPUS:84873301387

VL - 162

SP - 111

EP - 197

JO - Duke Mathematical Journal

JF - Duke Mathematical Journal

SN - 0012-7094

IS - 1

ER -