Reproduction predicts shorter telomeres and epigenetic age acceleration among young adult women

Calen P. Ryan*, M. Geoffrey Hayes, Nanette R. Lee, Thomas W. McDade, Meaghan J. Jones, Michael S. Kobor, Christopher W. Kuzawa, Dan T.A. Eisenberg

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

41 Scopus citations

Abstract

Evolutionary theory predicts that reproduction entails costs that detract from somatic maintenance, accelerating biological aging. Despite support from studies in human and non-human animals, mechanisms linking ‘costs of reproduction’ (CoR) to aging are poorly understood. Human pregnancy is characterized by major alterations in metabolic regulation, oxidative stress, and immune cell proliferation. We hypothesized that these adaptations could accelerate blood-derived cellular aging. To test this hypothesis, we examined gravidity in relation to telomere length (TL, n = 821) and DNA-methylation age (DNAmAge, n = 397) in a cohort of young (20–22 year-old) Filipino women. Age-corrected TL and accelerated DNAmAge both predict age-related morbidity and mortality, and provide markers of mitotic and non-mitotic cellular aging, respectively. Consistent with theoretical predictions, TL decreased (p = 0.031) and DNAmAge increased (p = 0.007) with gravidity, a relationship that was not contingent upon resource availability. Neither biomarker was associated with subsequent fertility (both p > 0.3), broadly consistent with a causal effect of gravidity on cellular aging. Our findings provide evidence that reproduction in women carries costs in the form of accelerated aging through two independent cellular pathways.

Original languageEnglish (US)
Article number11100
JournalScientific reports
Volume8
Issue number1
DOIs
StatePublished - Dec 1 2018

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Reproduction predicts shorter telomeres and epigenetic age acceleration among young adult women'. Together they form a unique fingerprint.

Cite this