Rescuing Logic Encryption in Post-SAT Era by Locking Obfuscation

Amin Rezaei, Yuanqi Shen, Hai Zhou

Research output: Chapter in Book/Report/Conference proceedingConference contribution

24 Scopus citations

Abstract

The active participation of external entities in the manufacturing flow has produced numerous hardware security issues in which piracy and overproduction are likely to be the most ubiquitous and expensive ones. The main approach to prevent unauthorized products from functioning is logic encryption that inserts key-controlled gates to the original circuit in a way that the valid behavior of the circuit only happens when the correct key is applied. The challenge for the security designer is to ensure neither the correct key nor the original circuit can be revealed by different analyses of the encrypted circuit. However, in state-of-the-art logic encryption works, a lot of performance is sold to guarantee security against powerful logic and structural attacks. This contradicts the primary reason of logic encryption that is to protect a precious design from being pirated and overproduced. In this paper, we propose a bilateral logic encryption platform that maintains high degree of security with small circuit modification. The robustness against exact and approximate attacks is also demonstrated.

Original languageEnglish (US)
Title of host publicationProceedings of the 2020 Design, Automation and Test in Europe Conference and Exhibition, DATE 2020
EditorsGiorgio Di Natale, Cristiana Bolchini, Elena-Ioana Vatajelu
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages13-18
Number of pages6
ISBN (Electronic)9783981926347
DOIs
StatePublished - Mar 2020
Event2020 Design, Automation and Test in Europe Conference and Exhibition, DATE 2020 - Grenoble, France
Duration: Mar 9 2020Mar 13 2020

Publication series

NameProceedings of the 2020 Design, Automation and Test in Europe Conference and Exhibition, DATE 2020

Conference

Conference2020 Design, Automation and Test in Europe Conference and Exhibition, DATE 2020
Country/TerritoryFrance
CityGrenoble
Period3/9/203/13/20

Funding

This work is partially supported by NSF under CNS-1441695, CNS-1651695, and CCF-1533656.

Keywords

  • Affectability Ratio
  • Circuit Obfuscation
  • Corruptibility Ratio
  • Logic Complexity
  • Logic Encryption
  • Logic Locking
  • SAT-based Attack
  • Structural Complexity

ASJC Scopus subject areas

  • Hardware and Architecture
  • Safety, Risk, Reliability and Quality
  • Modeling and Simulation
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Rescuing Logic Encryption in Post-SAT Era by Locking Obfuscation'. Together they form a unique fingerprint.

Cite this