Retinal Input Instructs Alignment of Visual Topographic Maps

Jason W. Triplett, Melinda T. Owens, Jena Yamada, Greg Lemke, Jianhua Cang, Michael P. Stryker, David A. Feldheim*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

82 Scopus citations


Sensory information is represented in the brain in the form of topographic maps, in which neighboring neurons respond to adjacent external stimuli. In the visual system, the superior colliculus receives topographic projections from the retina and primary visual cortex (V1) that are aligned. Alignment may be achieved through the use of a gradient of shared axon guidance molecules, or through a retinal-matching mechanism in which axons that monitor identical regions of visual space align. To distinguish between these possibilities, we take advantage of genetically engineered mice that we show have a duplicated functional retinocollicular map but only a single map in V1. Anatomical tracing revealed that the corticocollicular projection bifurcates to align with the duplicated retinocollicular map in a manner dependent on the normal pattern of spontaneous activity during development. These data suggest a general model in which convergent maps use coincident activity patterns to achieve alignment.

Original languageEnglish (US)
Pages (from-to)175-185
Number of pages11
Issue number1
StatePublished - Oct 2 2009



ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)


Dive into the research topics of 'Retinal Input Instructs Alignment of Visual Topographic Maps'. Together they form a unique fingerprint.

Cite this