TY - GEN
T1 - Revelation gap for pricing from samples
AU - Feng, Yiding
AU - Hartline, Jason D.
AU - Li, Yingkai
N1 - Funding Information:
This work is funded by NSF 1618502. The full version of the paper is available at https://arxiv.org/abs/2102.13496.
Publisher Copyright:
© 2021 ACM.
PY - 2021/6/15
Y1 - 2021/6/15
N2 - This paper considers prior-independent mechanism design, in which a single mechanism is designed to achieve approximately optimal performance on every prior distribution from a given class. Most results in this literature focus on mechanisms with truthtelling equilibria, a.k.a., truthful mechanisms. Feng and Hartline [FOCS 2018] introduce the revelation gap to quantify the loss of the restriction to truthful mechanisms. We solve a main open question left in Feng and Hartline [FOCS 2018]; namely, we identify a non-trivial revelation gap for revenue maximization. Our analysis focuses on the canonical problem of selling a single item to a single agent with only access to a single sample from the agent's valuation distribution. We identify the sample-bid mechanism (a simple non-truthful mechanism) and upper-bound its prior-independent approximation ratio by 1.835 (resp. 1.296) for regular (resp. MHR) distributions. We further prove that no truthful mechanism can achieve prior-independent approximation ratio better than 1.957 (resp. 1.543) for regular (resp. MHR) distributions. Thus, a non-trivial revelation gap is shown as the sample-bid mechanism outperforms the optimal prior-independent truthful mechanism. On the hardness side, we prove that no (possibly non-truthful) mechanism can achieve prior-independent approximation ratio better than 1.073 even for uniform distributions.
AB - This paper considers prior-independent mechanism design, in which a single mechanism is designed to achieve approximately optimal performance on every prior distribution from a given class. Most results in this literature focus on mechanisms with truthtelling equilibria, a.k.a., truthful mechanisms. Feng and Hartline [FOCS 2018] introduce the revelation gap to quantify the loss of the restriction to truthful mechanisms. We solve a main open question left in Feng and Hartline [FOCS 2018]; namely, we identify a non-trivial revelation gap for revenue maximization. Our analysis focuses on the canonical problem of selling a single item to a single agent with only access to a single sample from the agent's valuation distribution. We identify the sample-bid mechanism (a simple non-truthful mechanism) and upper-bound its prior-independent approximation ratio by 1.835 (resp. 1.296) for regular (resp. MHR) distributions. We further prove that no truthful mechanism can achieve prior-independent approximation ratio better than 1.957 (resp. 1.543) for regular (resp. MHR) distributions. Thus, a non-trivial revelation gap is shown as the sample-bid mechanism outperforms the optimal prior-independent truthful mechanism. On the hardness side, we prove that no (possibly non-truthful) mechanism can achieve prior-independent approximation ratio better than 1.073 even for uniform distributions.
KW - revelation gap
KW - revenue maximization
KW - sample-based pricing
UR - http://www.scopus.com/inward/record.url?scp=85108170200&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85108170200&partnerID=8YFLogxK
U2 - 10.1145/3406325.3451057
DO - 10.1145/3406325.3451057
M3 - Conference contribution
AN - SCOPUS:85108170200
T3 - Proceedings of the Annual ACM Symposium on Theory of Computing
SP - 1438
EP - 1451
BT - STOC 2021 - Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing
A2 - Khuller, Samir
A2 - Williams, Virginia Vassilevska
PB - Association for Computing Machinery
T2 - 53rd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2021
Y2 - 21 June 2021 through 25 June 2021
ER -