TY - JOUR
T1 - Revised astrometric calibration of the Gemini Planet Imager
AU - De Rosa, Robert J.
AU - Nguyen, Meiji M.
AU - Chilcote, Jeffrey
AU - MacIntosh, Bruce
AU - Perrin, Marshall D.
AU - Konopacky, Quinn
AU - Wang, Jason J.
AU - Duchêne, Gaspard
AU - Nielsen, Eric L.
AU - Rameau, Julien
AU - Ammons, S. Mark
AU - Bailey, Vanessa P.
AU - Barman, Travis
AU - Bulger, Joanna
AU - Cotten, Tara
AU - Doyon, Rene
AU - Esposito, Thomas M.
AU - Fitzgerald, Michael P.
AU - Follette, Katherine B.
AU - Gerard, Benjamin L.
AU - Goodsell, Stephen J.
AU - Graham, James R.
AU - Greenbaum, Alexandra Z.
AU - Hibon, Pascale
AU - Hung, Li Wei
AU - Ingraham, Patrick
AU - Kalas, Paul
AU - Larkin, James E.
AU - Maire, Jérôme
AU - Marchis, Franck
AU - Marley, Mark S.
AU - Marois, Christian
AU - Metchev, Stanimir
AU - Millar-Blanchaer, Maxwell A.
AU - Oppenheimer, Rebecca
AU - Palmer, David
AU - Patience, Jennifer
AU - Poyneer, Lisa
AU - Pueyo, Laurent
AU - Rajan, Abhijith
AU - Rantakyrö, Fredrik T.
AU - Ruffio, Jean Baptiste
AU - Savransky, Dmitry
AU - Schneider, Adam C.
AU - Sivaramakrishnan, Anand
AU - Song, Inseok
AU - Soummer, Remi
AU - Thomas, Sandrine
AU - Kent Wallace, J.
AU - Ward-Duong, Kimberly
AU - Wiktorowicz, Sloane
AU - Wolff, Schuyler
N1 - Funding Information:
This research was carried out at the University of California Davis and Mt. Hamilton, supported by NASA grant NNX07AU10G to the University of California Davis. Research at Lick Observatory is partially supported by a generous gift from Google.
Funding Information:
The authors wish to thank Brian Chinn, Carlos Quiroz, Ignacio Arriagada, Thomas Hayward, and Carlos Alvarez for their useful discussions relating to this work. Supported by NSF under Grant Nos. AST-1411868 (R. D. R., E. L. N., K. B. F., B. M., and J. P.); AST-141378 (G. D.); AST-1518332 (R. D. R., J. J. W., T. M. E., J. R. G., and P. G. K.); and AST1411868 (J. H. and J. P.). Supported by NASA under Grant Nos. NNX14AJ80G (R. D. R., E. L. N., B. M., F. M., and M. P.); NSSC17K0535 (R. D. R, E. L. N., B. M., and J. B. R.); NNX15AC89G and NNX15AD95G (R. D. R., B. M., J. E. W., T. M. E., G. D., J. R. G., and P. G. K.). This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. This work benefited from NASA’s Nexus for Exoplanet System Science (NExSS) research coordination network sponsored by NASA’s Science Mission Directorate. J. R. was supported by the French National Research Agency in the framework of the Investissements d’Avenir Program (Grant No. ANR-15-IDEX-02). Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a co-operative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), National Research Council (Canada), CONICYT (Chile), Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina), Ministério da Ciência, Tecnologia e Inovação (Brazil), and Korea Astronomy and Space Science Institute (Republic of Korea). Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The observatory was made possible by the generous financial support of the W. M. Keck Foundation. The authors wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Maunakea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. This work has made use of data from the European Space Agency (ESA) mission Gaia,49 processed by the Gaia Data Processing and Analysis Consortium (DPAC). 50 Funding for the DPAC has been provided by the national institutions, in particular the institutions participating in the Gaia Multilateral Agreement. This research has made use of the SIMBAD database and the VizieR catalog access tool, both operated at the CDS, Strasbourg, France. This research has made use of the Washington Double Star Catalog maintained at the U.S. Naval Observatory. The authors have no relevant financial interests and no other potential conflicts of interest to disclose.
Publisher Copyright:
© 2020 Society of Photo-Optical Instrumentation Engineers (SPIE).
PY - 2020/1/1
Y1 - 2020/1/1
N2 - We present a revision to the astrometric calibration of the Gemini Planet Imager (GPI), an instrument designed to achieve the high contrast at small angular separations necessary to image substellar and planetary-mass companions around nearby, young stars. We identified several issues with the GPI data reduction pipeline (DRP) that significantly affected the determination of the angle of north in reduced GPI images. As well as introducing a small error in position angle measurements for targets observed at small zenith distances, this error led to a significant error in the previous astrometric calibration that has affected all subsequent astrometric measurements. We present a detailed description of these issues and how they were corrected. We reduced GPI observations of calibration binaries taken periodically since the instrument was commissioned in 2014 using an updated version of the DRP. These measurements were compared to observations obtained with the NIRC2 instrument on Keck II, an instrument with an excellent astrometric calibration, allowing us to derive an updated plate scale and north offset angle for GPI. This revised astrometric calibration should be used to calibrate all measurements obtained with GPI for the purposes of precision astrometry.
AB - We present a revision to the astrometric calibration of the Gemini Planet Imager (GPI), an instrument designed to achieve the high contrast at small angular separations necessary to image substellar and planetary-mass companions around nearby, young stars. We identified several issues with the GPI data reduction pipeline (DRP) that significantly affected the determination of the angle of north in reduced GPI images. As well as introducing a small error in position angle measurements for targets observed at small zenith distances, this error led to a significant error in the previous astrometric calibration that has affected all subsequent astrometric measurements. We present a detailed description of these issues and how they were corrected. We reduced GPI observations of calibration binaries taken periodically since the instrument was commissioned in 2014 using an updated version of the DRP. These measurements were compared to observations obtained with the NIRC2 instrument on Keck II, an instrument with an excellent astrometric calibration, allowing us to derive an updated plate scale and north offset angle for GPI. This revised astrometric calibration should be used to calibrate all measurements obtained with GPI for the purposes of precision astrometry.
KW - Gemini Planet Imager
KW - astrometric calibration
KW - data processing
KW - high-contrast imaging
UR - http://www.scopus.com/inward/record.url?scp=85082951769&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85082951769&partnerID=8YFLogxK
U2 - 10.1117/1.JATIS.6.1.015006
DO - 10.1117/1.JATIS.6.1.015006
M3 - Article
AN - SCOPUS:85082951769
SN - 2329-4124
VL - 6
JO - Journal of Astronomical Telescopes, Instruments, and Systems
JF - Journal of Astronomical Telescopes, Instruments, and Systems
IS - 1
M1 - 015006
ER -