Abstract
Purpose: The purpose was to evaluate radiofrequency (RF)-related heating of commonly used extracranial neurosurgical implants in 7-T magnetic resonance imaging (MRI). Materials and methods: Experiments were performed using a 7-T MR system equipped with a transmit/receive RF head coil. Four commonly used titanium neurosurgical implants were studied using a test procedure adapted from the American Society for Testing and Materials Standard F2182-11a. Implants (. n=. 4) were tested with an MRI turbo spin echo pulse sequence designed to achieve maximum RF exposure [specific absorption rate (SAR) level. =. 9.9. W/kg], which was further validated by performing calorimetry. Maximum temperature increases near each implant's surface were measured using fiberoptic temperature probes in a gelled-saline-filled phantom that mimicked the conductive properties of soft tissue. Measurement results were compared to literature data for patient safety. Results: The highest achievable phantom averaged SAR was determined by calorimetry to be 2.0. ±. 0.1. W/kg due to the highly conservative SAR estimation model used by this 7-T MR system. The maximum temperature increase at this SAR level was below 1.0. °C for all extracranial neurosurgical implants that underwent testing. Conclusion: The findings indicated that RF-related heating under the conditions used in this investigation is not a significant safety concern for patients with the particular extracranial neurosurgical implants evaluated in this study.
Original language | English (US) |
---|---|
Pages (from-to) | 1029-1034 |
Number of pages | 6 |
Journal | Magnetic Resonance Imaging |
Volume | 31 |
Issue number | 6 |
DOIs | |
State | Published - Jul 2013 |
Keywords
- 7T
- Heating
- Implants
- MRI safety
- SAR
- Ultra-high-field MRI
ASJC Scopus subject areas
- Biophysics
- Biomedical Engineering
- Radiology Nuclear Medicine and imaging