Riemann–roch for real varieties

Paul Bressler*, Mikhail Kapranov, Boris Tsygan, Eric Vasserot

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingChapter

2 Scopus citations

Abstract

We prove a Riemann–Roch type result for any smooth family of smooth oriented compact manifolds. It describes the class of the conjectural higher deter-minantal gerbe associated to the fibers of the family.

Original languageEnglish (US)
Title of host publicationProgress in Mathematics
PublisherSpringer Basel
Pages125-164
Number of pages40
DOIs
StatePublished - Jan 1 2009

Publication series

NameProgress in Mathematics
Volume269
ISSN (Print)0743-1643
ISSN (Electronic)2296-505X

Keywords

  • Cyclic homology
  • Determinantal gerbe
  • Lie algebroid
  • Riemann–Roch

ASJC Scopus subject areas

  • Analysis
  • Algebra and Number Theory
  • Geometry and Topology

Fingerprint Dive into the research topics of 'Riemann–roch for real varieties'. Together they form a unique fingerprint.

  • Cite this

    Bressler, P., Kapranov, M., Tsygan, B., & Vasserot, E. (2009). Riemann–roch for real varieties. In Progress in Mathematics (pp. 125-164). (Progress in Mathematics; Vol. 269). Springer Basel. https://doi.org/10.1007/978-0-8176-4745-2_4