Riemann–roch for real varieties

Paul Bressler*, Mikhail Kapranov, Boris L Tsygan, Eric Vasserot

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingChapter

2 Citations (Scopus)

Abstract

We prove a Riemann–Roch type result for any smooth family of smooth oriented compact manifolds. It describes the class of the conjectural higher deter-minantal gerbe associated to the fibers of the family.

Original languageEnglish (US)
Title of host publicationProgress in Mathematics
PublisherSpringer Basel
Pages125-164
Number of pages40
DOIs
StatePublished - Jan 1 2009

Publication series

NameProgress in Mathematics
Volume269
ISSN (Print)0743-1643
ISSN (Electronic)2296-505X

Fingerprint

Gerbe
Compact Manifold
Fiber
Family
Class

Keywords

  • Cyclic homology
  • Determinantal gerbe
  • Lie algebroid
  • Riemann–Roch

ASJC Scopus subject areas

  • Analysis
  • Algebra and Number Theory
  • Geometry and Topology

Cite this

Bressler, P., Kapranov, M., Tsygan, B. L., & Vasserot, E. (2009). Riemann–roch for real varieties. In Progress in Mathematics (pp. 125-164). (Progress in Mathematics; Vol. 269). Springer Basel. https://doi.org/10.1007/978-0-8176-4745-2_4
Bressler, Paul ; Kapranov, Mikhail ; Tsygan, Boris L ; Vasserot, Eric. / Riemann–roch for real varieties. Progress in Mathematics. Springer Basel, 2009. pp. 125-164 (Progress in Mathematics).
@inbook{92ebe7b441e64871aee8528b275c61ae,
title = "Riemann–roch for real varieties",
abstract = "We prove a Riemann–Roch type result for any smooth family of smooth oriented compact manifolds. It describes the class of the conjectural higher deter-minantal gerbe associated to the fibers of the family.",
keywords = "Cyclic homology, Determinantal gerbe, Lie algebroid, Riemann–Roch",
author = "Paul Bressler and Mikhail Kapranov and Tsygan, {Boris L} and Eric Vasserot",
year = "2009",
month = "1",
day = "1",
doi = "10.1007/978-0-8176-4745-2_4",
language = "English (US)",
series = "Progress in Mathematics",
publisher = "Springer Basel",
pages = "125--164",
booktitle = "Progress in Mathematics",

}

Bressler, P, Kapranov, M, Tsygan, BL & Vasserot, E 2009, Riemann–roch for real varieties. in Progress in Mathematics. Progress in Mathematics, vol. 269, Springer Basel, pp. 125-164. https://doi.org/10.1007/978-0-8176-4745-2_4

Riemann–roch for real varieties. / Bressler, Paul; Kapranov, Mikhail; Tsygan, Boris L; Vasserot, Eric.

Progress in Mathematics. Springer Basel, 2009. p. 125-164 (Progress in Mathematics; Vol. 269).

Research output: Chapter in Book/Report/Conference proceedingChapter

TY - CHAP

T1 - Riemann–roch for real varieties

AU - Bressler, Paul

AU - Kapranov, Mikhail

AU - Tsygan, Boris L

AU - Vasserot, Eric

PY - 2009/1/1

Y1 - 2009/1/1

N2 - We prove a Riemann–Roch type result for any smooth family of smooth oriented compact manifolds. It describes the class of the conjectural higher deter-minantal gerbe associated to the fibers of the family.

AB - We prove a Riemann–Roch type result for any smooth family of smooth oriented compact manifolds. It describes the class of the conjectural higher deter-minantal gerbe associated to the fibers of the family.

KW - Cyclic homology

KW - Determinantal gerbe

KW - Lie algebroid

KW - Riemann–Roch

UR - http://www.scopus.com/inward/record.url?scp=84929281660&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84929281660&partnerID=8YFLogxK

U2 - 10.1007/978-0-8176-4745-2_4

DO - 10.1007/978-0-8176-4745-2_4

M3 - Chapter

AN - SCOPUS:84929281660

T3 - Progress in Mathematics

SP - 125

EP - 164

BT - Progress in Mathematics

PB - Springer Basel

ER -

Bressler P, Kapranov M, Tsygan BL, Vasserot E. Riemann–roch for real varieties. In Progress in Mathematics. Springer Basel. 2009. p. 125-164. (Progress in Mathematics). https://doi.org/10.1007/978-0-8176-4745-2_4