Abstract
The bromodomain and extra-terminal motif (BET) protein BRD4 binds to acetylated histones at enhancers and promoters via its bromodomains (BDs) to regulate transcriptional elongation. In human colorectal cancer cells, we found that BRD4 was recruited to enhancers that were co-occupied by mutant p53 and supported the synthesis of enhancer-directed transcripts (eRNAs) in response to chronic immune signaling. BRD4 selectively associated with eRNAs that were produced from BRD4-bound enhancers. Using biochemical and biophysical methods, we found that BRD4 BDs function cooperatively as docking sites for eRNAs and that the BDs of BRD2, BRD3, BRDT, BRG1, and BRD7 directly interact with eRNAs. BRD4-eRNA interactions increased BRD4 binding to acetylated histones in vitro and augmented BRD4 enhancer recruitment and transcriptional cofactor activities. Our results suggest a mechanism by which eRNAs are directly involved in gene regulation by modulating enhancer interactions and transcriptional functions of BRD4.
Original language | English (US) |
---|---|
Pages (from-to) | 687-697 |
Number of pages | 11 |
Journal | Nature Structural and Molecular Biology |
Volume | 25 |
Issue number | 8 |
DOIs | |
State | Published - Aug 1 2018 |
Funding
We are grateful to C.-M. Chiang (University of Texas Southwestern) for providing the pF:hBRD4 (1–722)-11d, pcDNA3-F:hBRD4 FL, and pcDNA3-F:hBRD4 ∆BD1/2 plasmids and the BRD4-FL-and BRD4 ∆BD1/2–expressing baculovirus. We are also thankful to X. Chen (University of California, Davis) for providing the SW480 shLacZ and shp53 cell lines. H.R. was supported by the University of California at San Diego Cellular and Molecular Genetics Training Program through an institutional grant from the National Institute of General Medicine (T32 GM007240). This work was supported by Research Scholar Award from the Sidney Kimmel Foundation for Cancer Research 857A6A (S.M.L.), American Cancer Society ACS-IRG 70-002 (S.M.L.), and the University of California Cancer Research Coordinating Committee, CRN-17-420616 (S.M.L.).
ASJC Scopus subject areas
- Structural Biology
- Molecular Biology