Roadmap on energy harvesting materials

Vincenzo Pecunia*, S. Ravi P. Silva*, Jamie D. Phillips, Elisa Artegiani, Alessandro Romeo, Hongjae Shim, Jongsung Park, Jin Hyeok Kim, Jae Sung Yun, Gregory C. Welch, Bryon W. Larson, Myles Creran, Audrey Laventure, Kezia Sasitharan, Natalie Flores-Diaz, Marina Freitag, Jie Xu, Thomas M. Brown, Benxuan Li, Yiwen WangZhe Li, Bo Hou, Behrang H. Hamadani, Emmanuel Defay, Veronika Kovacova, Sebastjan Glinsek, Sohini Kar-Narayan*, Yang Bai, Da Bin Kim, Yong Soo Cho, Agnė Žukauskaitė, Stephan Barth, Feng Ru Fan, Wenzhuo Wu, Pedro Costa, Javier del Campo, Senentxu Lanceros-Mendez, Hamideh Khanbareh, Zhong Lin Wang, Xiong Pu, Caofeng Pan, Renyun Zhang, Jing Xu, Xun Zhao, Yihao Zhou, Guorui Chen, Trinny Tat, Il Woo Ock, Jun Chen, Sontyana Adonijah Graham, Jae Su Yu, Ling Zhi Huang, Dan Dan Li, Ming Guo Ma, Jikui Luo, Feng Jiang, Pooi See Lee, Bhaskar Dudem, Venkateswaran Vivekananthan, Mercouri G. Kanatzidis, Hongyao Xie, Xiao Lei Shi, Zhi Gang Chen, Alexander Riss, Michael Parzer, Fabian Garmroudi, Ernst Bauer, Duncan Zavanelli, Madison K. Brod, Muath Al Malki, G. Jeffrey Snyder, Kirill Kovnir, Susan M. Kauzlarich, Ctirad Uher, Jinle Lan, Yuan Hua Lin, Luis Fonseca, Alex Morata, Marisol Martin-Gonzalez, Giovanni Pennelli, David Berthebaud, Takao Mori, Robert J. Quinn, Jan Willem G. Bos, Christophe Candolfi, Patrick Gougeon, Philippe Gall, Bertrand Lenoir, Deepak Venkateshvaran, Bernd Kaestner, Yunshan Zhao, Gang Zhang, Yoshiyuki Nonoguchi, Bob C. Schroeder, Emiliano Bilotti, Akanksha K. Menon, Jeffrey J. Urban, Oliver Fenwick, Ceyla Asker, A. Alec Talin, Thomas D. Anthopoulos, Tommaso Losi, Fabrizio Viola, Mario Caironi, Dimitra G. Georgiadou, Li Ding, Lian Mao Peng, Zhenxing Wang, Muh Dey Wei, Renato Negra, Max C. Lemme, Mahmoud Wagih, Steve Beeby, Taofeeq Ibn-Mohammed, K. B. Mustapha, A. P. Joshi

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

27 Scopus citations

Abstract

Ambient energy harvesting has great potential to contribute to sustainable development and address growing environmental challenges. Converting waste energy from energy-intensive processes and systems (e.g. combustion engines and furnaces) is crucial to reducing their environmental impact and achieving net-zero emissions. Compact energy harvesters will also be key to powering the exponentially growing smart devices ecosystem that is part of the Internet of Things, thus enabling futuristic applications that can improve our quality of life (e.g. smart homes, smart cities, smart manufacturing, and smart healthcare). To achieve these goals, innovative materials are needed to efficiently convert ambient energy into electricity through various physical mechanisms, such as the photovoltaic effect, thermoelectricity, piezoelectricity, triboelectricity, and radiofrequency wireless power transfer. By bringing together the perspectives of experts in various types of energy harvesting materials, this Roadmap provides extensive insights into recent advances and present challenges in the field. Additionally, the Roadmap analyses the key performance metrics of these technologies in relation to their ultimate energy conversion limits. Building on these insights, the Roadmap outlines promising directions for future research to fully harness the potential of energy harvesting materials for green energy anytime, anywhere.

Original languageEnglish (US)
Article number042501
JournalJPhys Materials
Volume6
Issue number4
DOIs
StatePublished - Oct 1 2023

Keywords

  • energy harvesting materials
  • photovoltaics
  • piezoelectric energy harvesting
  • radiofrequency energy harvesting
  • sustainability
  • thermoelectric energy harvesting
  • triboelectric energy harvesting

ASJC Scopus subject areas

  • Condensed Matter Physics
  • Atomic and Molecular Physics, and Optics
  • General Materials Science

Fingerprint

Dive into the research topics of 'Roadmap on energy harvesting materials'. Together they form a unique fingerprint.

Cite this