Robotic micromanipulator for ophthalmic surgery

C. A. Garcia', K. W. Grace, M. R. Glucksberg, P. S. Jensen, J. E. Colgate

Research output: Contribution to journalArticlepeer-review


Purpose. Recent research in retin; il venous occlusion has motivated development of an operating room compatible micromanipulator capable of mimicking the scleral-incision-ce tiered pivoting movement of typical surgical tool manipulation. Methocs. A six-degree-of-freedom computer-controlled robotic microrr anipulator has been designed and fabricated. Its six degrees of freedom (e.g. three translations and three rotations) enable arbitrary position! ig of a tool within its workspace. The system accepts desired tool movement commands from the surgeon via trackball The computer controller ranslates these commands into robot movement after applying the desired mathematical constraints (such as those which keep the tool fixed at the point of sclera/tool intersection). Because the constraints are "soft" Ihey may be altered or removed in real time to accommodate various modos of operation. Results. Through a scierai incision the ophthalmic surcieon or researcher can manipulate a tool and exhibit high-resolution low tremor movement without affecting eye position as would be the case with a traditional cartesian (x,y,z) micromanipulator. Conclusions. 1 his novel micromanipulator enables navigation of a tool tip within the eye with smoothness and steadiness of motion not possible with other micr manipulators or with the unaided hand. Prototypes are presently being used in retinal venous occlusion research and grin lens imaging techniques.

Original languageEnglish (US)
JournalInvestigative Ophthalmology and Visual Science
Issue number4
StatePublished - Dec 1 1997

ASJC Scopus subject areas

  • Ophthalmology

Fingerprint Dive into the research topics of 'Robotic micromanipulator for ophthalmic surgery'. Together they form a unique fingerprint.

Cite this