Robust and stochastically weighted multiobjective optimization models and reformulations

Jian Hu*, Sanjay Mehrotra

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

45 Scopus citations


We introduce and study a family of models for multiexpert multiobjective/criteria decision making. These models use a concept of weight robustness to generate a risk-averse decision. In particular, the multiexpert multicriteria robust weighted sum approach (McRow) introduced in this paper identifies a (robust) Pareto decision that minimizes the worst-case weighted sum of objectives over a given weight region. The corresponding objective value, called the robust value of a decision, is shown to be increasing and concave in the weight set. We study compact reformulations of the McRow model with polyhedral and conic descriptions of the weight regions. The McRow model is developed further for stochastic multiexpert multicriteria decision making by allowing ambiguity or randomness in the weight region as well as the objective functions. The properties of the proposed approach are illustrated with a few textbook examples. The usefulness of the stochastic McRow model is demonstrated using a disaster planning example and an agriculture revenue management example.

Original languageEnglish (US)
Pages (from-to)936-953
Number of pages18
JournalOperations Research
Issue number4
StatePublished - Jul 2012

ASJC Scopus subject areas

  • Computer Science Applications
  • Management Science and Operations Research


Dive into the research topics of 'Robust and stochastically weighted multiobjective optimization models and reformulations'. Together they form a unique fingerprint.

Cite this