Robust cell segmentation for histological images of Glioblastoma

Jun Kong, Pengyue Zhang, Yanhui Liang, George Teodoro, Daniel J. Brat, Fusheng Wang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

5 Scopus citations

Abstract

Glioblastoma (GBM) is a malignant brain tumor with uniformly dismal prognosis. Quantitative analysis of GBM cells is an important avenue to extract latent histologic disease signatures to correlate with molecular underpinnings and clinical outcomes. As a prerequisite, a robust and accurate cell segmentation is required. In this paper, we present an automated cell segmentation method that can satisfactorily address segmentation of overlapped cells commonly seen in GBM histology specimens. This method first detects cells with seed connectivity, distance constraints, image edge map, and a shape-based voting image. Initialized by identified seeds, cell boundaries are deformed with an improved variational level set method that can handle clumped cells. We test our method on 40 histological images of GBM with human annotations. The validation results suggest that our cell segmentation method is promising and represents an advance in quantitative cancer research.

Original languageEnglish (US)
Title of host publication2016 IEEE International Symposium on Biomedical Imaging
Subtitle of host publicationFrom Nano to Macro, ISBI 2016 - Proceedings
PublisherIEEE Computer Society Press
Pages1041-1045
Number of pages5
Volume2016-June
ISBN (Electronic)9781479923502
DOIs
StatePublished - Jun 15 2016
Event2016 IEEE 13th International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2016 - Prague, Czech Republic
Duration: Apr 13 2016Apr 16 2016

Publication series

NameProceedings - International Symposium on Biomedical Imaging
Volume2016-June
ISSN (Print)1945-7928
ISSN (Electronic)1945-8452

Conference

Conference2016 IEEE 13th International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2016
Country/TerritoryCzech Republic
CityPrague
Period4/13/164/16/16

Keywords

  • cell segmentation
  • Hessian
  • Histological Image
  • iterative merging
  • seed detection

ASJC Scopus subject areas

  • Biomedical Engineering
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Robust cell segmentation for histological images of Glioblastoma'. Together they form a unique fingerprint.

Cite this