Abstract
Multi-joint/multi-degree of freedom (DOF) human arm impedance estimation is important in many disciplines. However, as the number of joints/DOFs increases, it may become intractable to identify the system reliably. A robust, unbiased and tractable estimation method based on a systematic dynamics decomposition, which decomposes a multi-input multi-output (MIMO) system into multiple single-input multi-output (SIMO) subsystems, is developed. Accuracy and robustness of the new method were validated through a human arm and a 2-DOF exoskeleton robot simulation with various magnitudes of sensor resolution and nonlinear friction. The approach can be similarly applied to identify more sophisticated systems with more joints/DOFs involved.
Original language | English (US) |
---|---|
Title of host publication | 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2011 |
Pages | 4453-4456 |
Number of pages | 4 |
DOIs | |
State | Published - Dec 26 2011 |
Event | 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2011 - Boston, MA, United States Duration: Aug 30 2011 → Sep 3 2011 |
Other
Other | 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2011 |
---|---|
Country/Territory | United States |
City | Boston, MA |
Period | 8/30/11 → 9/3/11 |
ASJC Scopus subject areas
- Signal Processing
- Biomedical Engineering
- Computer Vision and Pattern Recognition
- Health Informatics