Role of dosage-sensitive sex reversal, adrenal hypoplasia congenita, critical region on the x chromosome, gene 1 in protein kinase a- and protein kinase c-mediated regulation of the steroidogenic acute regulatory protein expression in mouse leydig tumor cells: Mechanism of action

Pulak R. Manna, Matthew T. Dyson, Youngah Jo, Douglas M. Stocco

Research output: Contribution to journalArticlepeer-review

41 Scopus citations

Abstract

Dosage-sensitive sex reversal, adrenal hypoplasia congenita, critical region on the X chromosome, gene 1 (DAX-1) is an orphan nuclear receptor that has been demonstrated to be instrumental to the expression of the steroidogenic acute regulatory (StAR) protein that regulates steroid biosynthesis in steroidogenic cells. However, its mechanism of action remains obscure. The present investigation was aimed at exploring the molecular involvement of DAX-1 in protein kinase A (PKA)- and protein kinase C (PKC)-mediated regulation of StAR expression and its concomitant impact on steroid synthesis using MA-10 mouse Leydig tumor cells. We demonstrate that activation of the PKA and PKC pathways, by a cAMP analog dibutyryl (Bu)2cAMP [(Bu)2cAMP] and phorbol 12- myristate 13-acetate (PMA), respectively, markedly decreased DAX-1 expression, an event that was inversely correlated with StAR protein, StAR mRNA, and progesterone levels. Notably, the suppression of DAX-1 requires de novo transcription and translation, suggesting that the effect of DAX-1 in regulating StAR expression is dynamic. Chromatin immunoprecipitation studies revealed the association of DAX-1 with the proximal but not the distal region of the StAR promoter, and both (Bu)2cAMP and PMA decreased in vivo DAX-1-DNA interactions. EMSA and reporter gene analyses demonstrated the functional integrity of this interaction by showing that DAX-1 binds to a DNA hairpin at position -44/-20 bp of the mouse StAR promoter and that the binding of DAX-1 to this region decreases progesterone synthesis by impairing transcription of the StAR gene. In support of this, targeted silencing of endogenous DAX-1 elevated basal, (Bu)2cAMP-, and PMA-stimulated StAR expression and progesterone synthesis. Transrepression of the StAR gene by DAX-1 was tightly associated with expression of the nuclear receptors Nur77 and steroidogenicfactor-1, demonstrating these factors negatively modulate the steroidogenic response. These findings provide insight into the molecular events by which DAX-1 influences the PKA and PKC signaling pathways involved in the regulation of the StAR protein and steroidogenesis in mouse Leydig tumor cells. (Endocrinology 150: 187-199, 2009)

Original languageEnglish (US)
Pages (from-to)187-199
Number of pages13
JournalEndocrinology
Volume150
Issue number1
DOIs
StatePublished - Jan 2009

Funding

ASJC Scopus subject areas

  • Endocrinology

Fingerprint

Dive into the research topics of 'Role of dosage-sensitive sex reversal, adrenal hypoplasia congenita, critical region on the x chromosome, gene 1 in protein kinase a- and protein kinase c-mediated regulation of the steroidogenic acute regulatory protein expression in mouse leydig tumor cells: Mechanism of action'. Together they form a unique fingerprint.

Cite this