Abstract
The actin cytoskeleton plays a major role in cell motility that is essential for the function of phagocytes. Calponin is an actin-associated regulatory protein. Here we report the finding of significant levels of the h2 isoform of calponin in peripheral blood cells of myeloid lineage. To study the functional significance, h2-calponin gene (Cnn2) interrupted mice were constructed. Germ line transmission of the Cnn2-flox-neo allele was obtained in chimeras from two independent clones of targeted embryonic stem cells. The insertion of the neoR cassette into intron 2 of the Cnn2 gene resulted in a significant knockdown of h2-calponin expression. Removing the frt-flanked neoR cassette by FLP1 recombinase rescued the knockdown effect. Cre recombinase-induced deletion of the loxP-flanked exon 2 eliminated the expression of h2-calponin protein. H2-calponin-free mice showed reduced numbers of peripheral blood neutrophils and monocytes. H2-calponin-free macrophages demonstrated a higher rate of proliferation and faster migration than that of h2-calponin-positive cells, consistent with a faster diapedesis of peripheral monocytes and neutrophils. H2-calponin-free macrophages showed reduced spreading in adhesion culture together with decreased tropomyosin in the actin cytoskeleton. The lack of h2-calponin also significantly increased macrophage phagocytotic activity, suggesting a novel mechanism to regulate phagocyte functions.
Original language | English (US) |
---|---|
Pages (from-to) | 25887-25899 |
Number of pages | 13 |
Journal | Journal of Biological Chemistry |
Volume | 283 |
Issue number | 38 |
DOIs | |
State | Published - Sep 19 2008 |
Funding
ASJC Scopus subject areas
- Molecular Biology
- Biochemistry
- Cell Biology