Role of self-organization, nanostructuring, and lattice strain on phonon transport in NaPb18-xSnxBiTe20 thermoelectric materials

Jiaqing He, Aurelie Gueguen, Joseph R. Sootsman, Jin Cheng Zheng, Lijun Wu, Yimei Zhu, Mercouri G. Kanatzidis, Vinayak P. Dravid

Research output: Contribution to journalArticlepeer-review

22 Scopus citations

Abstract

The composition and microstructure of five thermoelectric materials, PbTe, SnTe, Pb0.65Sn0.35Te and NaPb18-xSn xBiTe20 (x = 5, 9), were investigated by advanced transmission electron microcopy. We confirm that the pure PbTe, SnTe, and Pb0.65Sn0.35Te have a uniform crystalline structure and homogeneous compositions without any nanoscale inclusions. On the other hand, the nominal NaPb9Sn9BiTe20 phase contains extensive inhomogeneities and nanostructures with size distribution of 3-7 nm. We find that the chemical architecture of the NaPb13Sn 5BiTe20 member of the series to be more complex; besides nanoscale precipitates, self-organized lamellar structures are present which were identified as PbTe and SnTe by composition analysis and transmission electron microscopy image simulations. Density functional theory calculations suggest that the arrangement of the lamellar structures conforms to the lowest total energy configuration. Geometric-phase analyses revealed large distributed elastic strain around the nanoscale inclusions and lamellar structures. We propose that interface-induced elastic perturbations in the matrix play a decisive role in affecting the phonon-propagation pathways. The interfaces further enhance phonon scattering which, in turn, reduces the lattice thermal conductivity in these systems that directly results directly in improvement in the thermoelectric figure of merit.

Original languageEnglish (US)
Pages (from-to)17828-17835
Number of pages8
JournalJournal of the American Chemical Society
Volume131
Issue number49
DOIs
StatePublished - Dec 16 2009

ASJC Scopus subject areas

  • Catalysis
  • Chemistry(all)
  • Biochemistry
  • Colloid and Surface Chemistry

Fingerprint

Dive into the research topics of 'Role of self-organization, nanostructuring, and lattice strain on phonon transport in NaPb18-xSnxBiTe20 thermoelectric materials'. Together they form a unique fingerprint.

Cite this