TY - JOUR
T1 - Role of the Active Site Cysteine of DpgA, a Bacterial Type III Polyketide Synthase
AU - Tseng, Claire C.
AU - McLoughlin, Shaun M.
AU - Kelleher, Neil L.
AU - Walsh, Christopher T.
PY - 2004/2/3
Y1 - 2004/2/3
N2 - DpgA is a bacterial type III polyketide synthase (PKS) that decarboxylates and condenses four malonyl-CoA molecules to produce 3,5-dihydroxyphenylacetyl-CoA (DPA-CoA) in the biosynthetic pathway to 3,5-dihydroxyphenylglycine, a key nonproteinogenic residue in the vancomycin family of antibiotics. DpgA has the conserved catalytic triad of Cys/His/Asn typical of type III PKS enzymes, and has been assumed to use Cys160 as the catalytic nucleophile to create a series of elongating acyl-S-enzyme intermediates prior to the C8 to C3 cyclization step. Incubation of purified DpgA with [14C]-malonyl-CoA followed by acid quench during turnover leads to accumulation of 10-15% of the DpgA molecules covalently acylated. Mutation of the active site Cys160 to Ala abrogated detectable covalent acylation, but the C160A mutant retained 50% of the V max for DPA-CoA formation, with a kcat still at 0.5 catalytic turnovers/min. For comparison, a C190A mutant retained wild-type activity, while the H296A mutant, in which the side chain of the presumed catalytic His is removed, had a 6-fold drop in kcat. During turnover, purified DpgA produced 1.2 equivalents of acetyl-CoA for each DPA-CoA, indicating 23% uncoupled decarboxylation competing with condensative C-C coupling. The C160A mutant showed an increased partition ratio for malonyl-CoA decarboxylation to acetyl-CoA vs condensation to DPA-CoA, reflecting more uncoupling in the mutant enzyme. The Cys-to-Ala mutant thus shows the unexpected result that, when the normal acyl-S-enzyme mechanism for this type III PKS elongation/cyclization catalyst is removed, it can still carry out the regioselective construction of the eight-carbon DPA-CoA skeleton with surprising efficiency.
AB - DpgA is a bacterial type III polyketide synthase (PKS) that decarboxylates and condenses four malonyl-CoA molecules to produce 3,5-dihydroxyphenylacetyl-CoA (DPA-CoA) in the biosynthetic pathway to 3,5-dihydroxyphenylglycine, a key nonproteinogenic residue in the vancomycin family of antibiotics. DpgA has the conserved catalytic triad of Cys/His/Asn typical of type III PKS enzymes, and has been assumed to use Cys160 as the catalytic nucleophile to create a series of elongating acyl-S-enzyme intermediates prior to the C8 to C3 cyclization step. Incubation of purified DpgA with [14C]-malonyl-CoA followed by acid quench during turnover leads to accumulation of 10-15% of the DpgA molecules covalently acylated. Mutation of the active site Cys160 to Ala abrogated detectable covalent acylation, but the C160A mutant retained 50% of the V max for DPA-CoA formation, with a kcat still at 0.5 catalytic turnovers/min. For comparison, a C190A mutant retained wild-type activity, while the H296A mutant, in which the side chain of the presumed catalytic His is removed, had a 6-fold drop in kcat. During turnover, purified DpgA produced 1.2 equivalents of acetyl-CoA for each DPA-CoA, indicating 23% uncoupled decarboxylation competing with condensative C-C coupling. The C160A mutant showed an increased partition ratio for malonyl-CoA decarboxylation to acetyl-CoA vs condensation to DPA-CoA, reflecting more uncoupling in the mutant enzyme. The Cys-to-Ala mutant thus shows the unexpected result that, when the normal acyl-S-enzyme mechanism for this type III PKS elongation/cyclization catalyst is removed, it can still carry out the regioselective construction of the eight-carbon DPA-CoA skeleton with surprising efficiency.
UR - http://www.scopus.com/inward/record.url?scp=0942268922&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0942268922&partnerID=8YFLogxK
U2 - 10.1021/bi035714b
DO - 10.1021/bi035714b
M3 - Article
C2 - 14744141
AN - SCOPUS:0942268922
VL - 43
SP - 970
EP - 980
JO - Biochemistry
JF - Biochemistry
SN - 0006-2960
IS - 4
ER -