Role of the C-terminal domain in the structure and function of tetrameric sodium channels

Claire Bagnéris, Paul G. Decaen, Benjamin A. Hall, Claire E. Naylor, David E. Clapham, Christopher W M Kay, B. A. Wallace*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

50 Scopus citations

Abstract

Voltage-gated sodium channels have essential roles in electrical signalling. Prokaryotic sodium channels are tetramers consisting of transmembrane (TM) voltage-sensing and pore domains, and a cytoplasmic carboxy-terminal domain. Previous crystal structures of bacterial sodium channels revealed the nature of their TM domains but not their C-terminal domains (CTDs). Here, using electron paramagnetic resonance (EPR) spectroscopy combined with molecular dynamics, we show that the CTD of the NavMs channel from Magnetococcus marinus includes a flexible region linking the TM domains to a four-helix coiled-coil bundle. A 2.9 Å resolution crystal structure of the NavMs pore indicates the position of the CTD, which is consistent with the EPR-derived structure. Functional analyses demonstrate that the coiled-coil domain couples inactivation with channel opening, and is enabled by negatively charged residues in the linker region. A mechanism for gating is proposed based on the structure, whereby splaying of the bottom of the pore is possible without requiring unravelling of the coiled-coil.

Original languageEnglish (US)
Article number2465
JournalNature communications
Volume4
DOIs
StatePublished - 2013

ASJC Scopus subject areas

  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'Role of the C-terminal domain in the structure and function of tetrameric sodium channels'. Together they form a unique fingerprint.

Cite this