Abstract
Background/Aims: A major goal of intracranial surgery is to maximize resection while minimizing neurological morbidity, particularly motor dysfunction. Direct cortical stimulation (DCS) is a common intraoperative adjunct used to identify functional motor cortex. In this study, we report on the safety/efficacy of short pulse train DCS (direct cortical stimulation motor-evoked potential, dcMEP) for motor mapping and monitoring during intracranial surgery. Methods: A retrospective analysis of 29 patients undergoing elective craniotomy for lesions near the motor cortex was performed. dcMEP mapping (40-120 V, 500-1,000 Hz, 5-9 pulses/s, 1-to 3-ms interstimulus interval, monopolar, 50-μs pulse width) was performed either alone (n = 29) or in addition to standard DCS (n = 6). Outcome measures were positive MEPs and the presence of seizures during stimulation. dcMEP-based continuous corticospinal tract (CST) monitoring was also performed. Changes in stimulation threshold and new postoperative neurological deficits were recorded. Results: dcMEP mapping success was 96% and was not affected by preoperative motor status. Intraoperative seizure rates for dcMEP were 3% and were not related to preoperative seizure status. CST monitoring success rate was 96%, and changes in stimulation threshold were predictive of new permanent motor deficits. Conclusions: dcMEP is an effective method for mapping motor function and may prove useful for continuous CST monitoring.
Original language | English (US) |
---|---|
Pages (from-to) | 379-385 |
Number of pages | 7 |
Journal | Stereotactic and Functional Neurosurgery |
Volume | 91 |
Issue number | 6 |
DOIs | |
State | Published - Nov 2013 |
Keywords
- Corticospinal tract
- Direct cortical stimulation motor-evoked potential
- Motor function
- Primary motor cortex
- Short pulse train technique
ASJC Scopus subject areas
- Surgery
- Clinical Neurology