Sam68 promotes hepatic gluconeogenesis via CRTC2

Aijun Qiao, Junlan Zhou, Shiyue Xu, Wenxia Ma, Chan Boriboun, Teayoun Kim, Baolong Yan, Jianxin Deng, Liu Yang, Eric Zhang, Yuhua Song, Yongchao C. Ma, Stephane Richard, Chunxiang Zhang, Hongyu Qiu, Kirk M. Habegger, Jianyi Zhang, Gangjian Qin*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Hepatic gluconeogenesis is essential for glucose homeostasis and also a therapeutic target for type 2 diabetes, but its mechanism is incompletely understood. Here, we report that Sam68, an RNA-binding adaptor protein and Src kinase substrate, is a novel regulator of hepatic gluconeogenesis. Both global and hepatic deletions of Sam68 significantly reduce blood glucose levels and the glucagon-induced expression of gluconeogenic genes. Protein, but not mRNA, levels of CRTC2, a crucial transcriptional regulator of gluconeogenesis, are >50% lower in Sam68-deficient hepatocytes than in wild-type hepatocytes. Sam68 interacts with CRTC2 and reduces CRTC2 ubiquitination. However, truncated mutants of Sam68 that lack the C- (Sam68ΔC) or N-terminal (Sam68ΔN) domains fails to bind CRTC2 or to stabilize CRTC2 protein, respectively, and transgenic Sam68ΔN mice recapitulate the blood-glucose and gluconeogenesis profile of Sam68-deficient mice. Hepatic Sam68 expression is also upregulated in patients with diabetes and in two diabetic mouse models, while hepatocyte-specific Sam68 deficiencies alleviate diabetic hyperglycemia and improves insulin sensitivity in mice. Thus, our results identify a role for Sam68 in hepatic gluconeogenesis, and Sam68 may represent a therapeutic target for diabetes.

Original languageEnglish (US)
Article number3340
JournalNature communications
Volume12
Issue number1
DOIs
StatePublished - Dec 2021

ASJC Scopus subject areas

  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Physics and Astronomy(all)

Fingerprint

Dive into the research topics of 'Sam68 promotes hepatic gluconeogenesis via CRTC2'. Together they form a unique fingerprint.

Cite this