TY - JOUR
T1 - Scalable passive sleep monitoring using mobile phones
T2 - Opportunities and obstacles
AU - Saeb, Sohrab
AU - Cybulski, Thaddeus R.
AU - Schueller, Stephen M.
AU - Kording, Konrad P.
AU - Mohr, David C.
N1 - Funding Information:
This study was supported by the following National Institute of Health grants: 5R01NS063399, P20MH090318, and R01MH100482. Author SMS was supported by the research grant K08MH102336 from the National Institute of Mental Health.
Publisher Copyright:
© Sohrab Saeb, Thaddeus R Cybulski, Stephen M Schueller, Konrad P Kording, David C Mohr.
PY - 2017/4
Y1 - 2017/4
N2 - Background: Sleep is a critical aspect of people's well-being and as such assessing sleep is an important indicator of a person's health. Traditional methods of sleep assessment are either time- and resource-intensive or suffer from self-reporting biases. Recently, researchers have started to use mobile phones to passively assess sleep in individuals' daily lives. However, this work remains in its early stages, having only examined relatively small and homogeneous populations in carefully controlled contexts. Thus, it remains an open question as to how well mobile device-based sleep monitoring generalizes to larger populations in typical use cases. Objective: The aim of this study was to assess the ability of machine learning algorithms to detect the sleep start and end times for the main sleep period in a 24-h cycle using mobile devices in a diverse sample. Methods: We collected mobile phone sensor data as well as daily self-reported sleep start and end times from 208 individuals (171 females; 37 males), diverse in age (18-66 years; mean 39.3), education, and employment status, across the United States over 6 weeks. Sensor data consisted of geographic location, motion, light, sound, and in-phone activities. No specific instructions were given to the participants regarding phone placement. We used random forest classifiers to develop both personalized and global predictors of sleep state from the phone sensor data. Results: Using all available sensor features, the average accuracy of classifying whether a 10-min segment was reported as sleep was 88.8%. This is somewhat better than using the time of day alone, which gives an average accuracy of 86.9%. The accuracy of the model considerably varied across the participants, ranging from 65.1% to 97.3%. We found that low accuracy in some participants was due to two main factors: missing sensor data and misreports. After correcting for these, the average accuracy increased to 91.8%, corresponding to an average median absolute deviation (MAD) of 38 min for sleep start time detection and 36 min for sleep end time. These numbers are close to the range reported by previous research in more controlled situations. Conclusions: We find that mobile phones provide adequate sleep monitoring in typical use cases, and that our methods generalize well to a broader population than has previously been studied. However, we also observe several types of data artifacts when collecting data in uncontrolled settings. Some of these can be resolved through corrections, but others likely impose a ceiling on the accuracy of sleep prediction for certain subjects. Future research will need to focus more on the understanding of people's behavior in their natural settings in order to develop sleep monitoring tools that work reliably in all cases for all people.
AB - Background: Sleep is a critical aspect of people's well-being and as such assessing sleep is an important indicator of a person's health. Traditional methods of sleep assessment are either time- and resource-intensive or suffer from self-reporting biases. Recently, researchers have started to use mobile phones to passively assess sleep in individuals' daily lives. However, this work remains in its early stages, having only examined relatively small and homogeneous populations in carefully controlled contexts. Thus, it remains an open question as to how well mobile device-based sleep monitoring generalizes to larger populations in typical use cases. Objective: The aim of this study was to assess the ability of machine learning algorithms to detect the sleep start and end times for the main sleep period in a 24-h cycle using mobile devices in a diverse sample. Methods: We collected mobile phone sensor data as well as daily self-reported sleep start and end times from 208 individuals (171 females; 37 males), diverse in age (18-66 years; mean 39.3), education, and employment status, across the United States over 6 weeks. Sensor data consisted of geographic location, motion, light, sound, and in-phone activities. No specific instructions were given to the participants regarding phone placement. We used random forest classifiers to develop both personalized and global predictors of sleep state from the phone sensor data. Results: Using all available sensor features, the average accuracy of classifying whether a 10-min segment was reported as sleep was 88.8%. This is somewhat better than using the time of day alone, which gives an average accuracy of 86.9%. The accuracy of the model considerably varied across the participants, ranging from 65.1% to 97.3%. We found that low accuracy in some participants was due to two main factors: missing sensor data and misreports. After correcting for these, the average accuracy increased to 91.8%, corresponding to an average median absolute deviation (MAD) of 38 min for sleep start time detection and 36 min for sleep end time. These numbers are close to the range reported by previous research in more controlled situations. Conclusions: We find that mobile phones provide adequate sleep monitoring in typical use cases, and that our methods generalize well to a broader population than has previously been studied. However, we also observe several types of data artifacts when collecting data in uncontrolled settings. Some of these can be resolved through corrections, but others likely impose a ceiling on the accuracy of sleep prediction for certain subjects. Future research will need to focus more on the understanding of people's behavior in their natural settings in order to develop sleep monitoring tools that work reliably in all cases for all people.
KW - Classification
KW - Decision trees
KW - Mobile phones
KW - Sleep monitoring
UR - http://www.scopus.com/inward/record.url?scp=85018788211&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85018788211&partnerID=8YFLogxK
U2 - 10.2196/jmir.6821
DO - 10.2196/jmir.6821
M3 - Article
C2 - 28420605
AN - SCOPUS:85018788211
SN - 1439-4456
VL - 19
JO - Journal of Medical Internet Research
JF - Journal of Medical Internet Research
IS - 4
M1 - e118
ER -