Scaling of local persistence in the disordered contact process

Róbert Juhász, István A. Kovács

Research output: Contribution to journalArticlepeer-review

1 Scopus citations


We study the time dependence of the local persistence probability during a nonstationary time evolution in the disordered contact process in d=1, 2, and 3 dimensions. We present a method for calculating the persistence with the strong-disorder renormalization group (SDRG) technique, which we then apply at the critical point analytically for d=1 and numerically for d=2,3. According to the results, the average persistence decays at late times as an inverse power of the logarithm of time, with a universal dimension-dependent generalized exponent. For d=1, the distribution of sample-dependent local persistence is shown to be characterized by a universal limit distribution of effective persistence exponents. Using a phenomenological approach of rare-region effects in the active phase, we obtain a nonuniversal algebraic decay of the average persistence for d=1 and enhanced power laws for d>1. As an exception, for randomly diluted lattices, the algebraic decay remains valid for d>1, which is explained by the contribution of dangling ends. Results on the time dependence of average persistence are confirmed by Monte Carlo simulations. We also prove the equivalence of the persistence with a return probability, a valuable tool for the argumentations.

Original languageEnglish (US)
Article number012108
JournalPhysical Review E
Issue number1
StatePublished - Jul 2020

ASJC Scopus subject areas

  • Statistical and Nonlinear Physics
  • Statistics and Probability
  • Condensed Matter Physics


Dive into the research topics of 'Scaling of local persistence in the disordered contact process'. Together they form a unique fingerprint.

Cite this