Search for single production of vector-like quarks decaying to a b quark and a Higgs boson

The CMS Collaboration

Research output: Contribution to journalArticlepeer-review

39 Scopus citations

Abstract

A search is presented for single production of heavy vector-like quarks (B) that decay to a Higgs boson and a b quark, with the Higgs boson decaying to a highly boosted b b ¯ pair reconstructed as a single collimated jet. The analysis is based on data collected by the CMS experiment in proton-proton collisions at s=13 TeV, corresponding to an integrated luminosity of 35.9 fb−1. The data are consistent with background expectations, and upper limits at 95% confidence level on the product of the B quark cross section and the branching fraction are obtained in the range 1.28–0.07 pb, for a narrow B quark with a mass between 700 and 1800 GeV. The production of B quarks with widths of 10, 20 and 30% of the resonance mass is also considered, and the sensitivities obtained are similar to those achieved in the narrow width case. This is the first search at the CERN LHC for the single production of a B quark through its fully hadronic decay channel, and the first study considering finite resonance widths of the B quark.

Original languageEnglish (US)
Article number31
JournalJournal of High Energy Physics
Volume2018
Issue number6
DOIs
StatePublished - Jun 1 2018

Funding

Individuals have received support from the Marie-Curie program and the European Research Council and Horizon 2020 Grant, contract No. 675440 (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the F.R.S.-FNRS and FWO (Belgium) under the “Excellence of Science - EOS” - be.h project n. 30820817; the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS program of the Foundation for Polish Science, cofinanced We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COL-CIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR and RAEP (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI and FEDER (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (U.S.A.). Open Access, Copyright CERN, for the benefit of the CMS Collaboration. Article funded by SCOAP3.

Keywords

  • Beyond Standard Model
  • Hadron-Hadron scattering (experiments)
  • vector-like quarks

ASJC Scopus subject areas

  • Nuclear and High Energy Physics

Fingerprint

Dive into the research topics of 'Search for single production of vector-like quarks decaying to a b quark and a Higgs boson'. Together they form a unique fingerprint.

Cite this