Abstract
Background: Adaptive shifts in gut microbiome composition are one route by which animals adapt to seasonal changes in food availability and diet. However, outside of dietary shifts, other potential environmental drivers of gut microbial composition have rarely been investigated, particularly in organisms living in their natural environments. Results: Here, we generated the largest wild nonhuman primate gut microbiome dataset to date to identify the environmental drivers of gut microbial diversity and function in 758 samples collected from wild Ethiopian geladas (Theropithecus gelada). Because geladas live in a cold, high-altitude environment and have a low-quality grass-based diet, they face extreme thermoregulatory and energetic constraints. We tested how proxies of food availability (rainfall) and thermoregulatory stress (temperature) predicted gut microbiome composition of geladas. The gelada gut microbiome composition covaried with rainfall and temperature in a pattern that suggests distinct responses to dietary and thermoregulatory challenges. Microbial changes were driven by differences in the main components of the diet across seasons: in rainier periods, the gut was dominated by cellulolytic/fermentative bacteria that specialized in digesting grass, while during dry periods the gut was dominated by bacteria that break down starches found in underground plant parts. Temperature had a comparatively smaller, but detectable, effect on the gut microbiome. During cold and dry periods, bacterial genes involved in energy, amino acid, and lipid metabolism increased, suggesting a stimulation of fermentation activity in the gut when thermoregulatory and nutritional stress co-occurred, and potentially helping geladas to maintain energy balance during challenging periods. Conclusion: Together, these results shed light on the extent to which gut microbiota plasticity provides dietary and metabolic flexibility to the host, and might be a key factor to thriving in changing environments. On a longer evolutionary timescale, such metabolic flexibility provided by the gut microbiome may have also allowed members of Theropithecus to adopt a specialized diet, and colonize new high-altitude grassland habitats in East Africa. [MediaObject not available: see fulltext.].
Original language | English (US) |
---|---|
Article number | 26 |
Journal | Microbiome |
Volume | 9 |
Issue number | 1 |
DOIs | |
State | Published - Dec 2021 |
Funding
We thank the Ethiopian Wildlife Conservation Authority (EWCA), along with the wardens and staff of the Simien Mountains National Park for permission to conduct research and ongoing support to our long-term research project. We are also very grateful to the Simien Mountains Gelada Research Project field team for their help with field data collection, particularly our primary data collectors: Eshete Jejaw, Ambaye Fanta, Setey Girmay, Atirsaw Adugna, and Dereje Bewket. We would like to also thank Gavin M. Douglas for his expertise, troubleshooting, and discussion when using the PICRUSt2 pipeline. Special thanks to Johannes R. Björk and Elizabeth A. Archie for stimulating discussion about microbiome analyses and sharing code. Finally, we would also like to thank the two anonymous reviewers who provided useful comments. This research was funded by the National Science Foundation (BCS-1723228, BCS-1723237, BCS-2010309, BCS-0715179, BCS-1732231, IOS-1255974, IOS-1854359) and the L.S.B. Leakey Foundation (A.L.). The long term gelada research was supported by the University of Michigan, Stony Brook University, and Arizona State University, and the L.S.B. Leakey Foundation (A.L., J.C.B., T.J.B.). K.R.A. is supported as a fellow in the CIFAR ‘Humans and the Microbiome’ program. N.S.M. was supported by the National Institutes of Health (R00-AG051764).
Keywords
- Graminivory
- Gut microbiome
- Primates
- Seasonality
- Thermoregulation
- Theropithecus gelada
ASJC Scopus subject areas
- Microbiology
- Microbiology (medical)
Fingerprint
Dive into the research topics of 'Seasonal shifts in the gut microbiome indicate plastic responses to diet in wild geladas'. Together they form a unique fingerprint.Datasets
-
Additional file 2 of Seasonal shifts in the gut microbiome indicate plastic responses to diet in wild geladas
Baniel, A. (Creator), Amato, K. R. (Creator), Beehner, J. C. (Creator), Bergman, T. J. (Creator), Mercer, A. (Creator), Perlman, R. F. (Creator), Petrullo, L. (Creator), Reitsema, L. (Creator), Sams, S. (Creator), Lu, A. (Creator) & Snyder-Mackler, N. (Creator), figshare, 2021
DOI: 10.6084/m9.figshare.13634247, https://springernature.figshare.com/articles/dataset/Additional_file_2_of_Seasonal_shifts_in_the_gut_microbiome_indicate_plastic_responses_to_diet_in_wild_geladas/13634247
Dataset
-
Seasonal shifts in the gut microbiome indicate plastic responses to diet in wild geladas
Baniel, A. (Creator), Amato, K. R. (Creator), Beehner, J. C. (Creator), Bergman, T. J. (Creator), Mercer, A. (Creator), Perlman, R. F. (Creator), Petrullo, L. (Creator), Reitsema, L. (Creator), Sams, S. (Creator), Lu, A. (Creator) & Snyder-Mackler, N. (Creator), figshare, 2021
DOI: 10.6084/m9.figshare.c.5279499, https://springernature.figshare.com/collections/Seasonal_shifts_in_the_gut_microbiome_indicate_plastic_responses_to_diet_in_wild_geladas/5279499
Dataset