Abstract
Surface second harmonic generation (SHG) phase measurements are carried out on methyl ester-functionalized fused quartz/water interfaces in the presence and absence of Cr(VI). The experiments are performed at pH 7, room temperature, and a chromate concentration of 10-4 M, which corresponds to monolayer Cr(VI) coverage. The liquid/solid interface is probed from the fused quartz side by directing the probe light field at 580 nm onto the interface together with an SHG reference signal at 290 nm that is collinear with the fundamental. The phase difference of the SHG signals generated at the interface in the presence and absence of Cr(VI) is 85 degrees, which is consistent with SHG resonance enhancement observed for the surface-bound Cr(VI) near 290 nm. The optical arrangement discussed here does not require vacuum technology or optics that compensate for the dispersion of the fundamental and the second harmonic E-fields in the two condensed-phase media. This approach is general and can be applied for analyzing thermodynamic and kinetic data derived from SHG measurements of physical and chemical processes occurring at any buried interface.
Original language | English (US) |
---|---|
Pages (from-to) | 24386-24390 |
Number of pages | 5 |
Journal | Journal of Physical Chemistry B |
Volume | 109 |
Issue number | 51 |
DOIs | |
State | Published - Dec 29 2005 |
ASJC Scopus subject areas
- Physical and Theoretical Chemistry